Advertisement

Measurement Technologies for Heart Valve Function

  • Morten O. Jensen
  • Andrew W. Siefert
  • Ikechukwu Okafor
  • Ajit P. YoganathanEmail author
Chapter

Abstract

Experimental measurement technologies have been critical to advancing scientific knowledge and to the development of prosthetic heart valve devices. A myriad of innovative measurement technologies has been successfully utilized within in vivo, ex vivo, and in vitro models. Within these models, these technologies have been used to evaluate the function of native heart valves, models of heart valve disease, and prosthetic devices. These evaluations have focused on quantifying heart valve geometry, dynamics, tissue deformation, transvalvular flow, and valve and device mechanics. Knowledge gained from these studies has advanced reconstructive surgical techniques, implanted device function, and next generation devices. Understanding the application and relative advantages of these measurement technologies is important not only for scientific research but also in quantifying device function per international standards and regulatory guidance.

Keywords

Heart Valve Measurement Pressure Flow Biomechanics In Vitro In Vivo 

References

  1. 1.
    Bluestein D, Rambod E, Gharib M. Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J Biomech Eng. 2000;122(2):125–34.PubMedCrossRefGoogle Scholar
  2. 2.
    Falahatpisheh A, Kheradvar A. High-speed particle image velocimetry to assess cardiac fluid dynamics in vitro: from performance to validation. Eur J Mech B Fluids. 2012;35:2–8.CrossRefGoogle Scholar
  3. 3.
    Herbertson LH, Deutsch S, Manning KB. Modifying a tilting disk mechanical heart valve design to improve closing dynamics. J Biomech Eng. 2008;130(5):054503.PubMedCrossRefGoogle Scholar
  4. 4.
    Moore B, Dasi LP. Spatio-temporal complexity of the aortic sinus vortex. Exp Fluids. 2014;55(7):1770.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Saikrishnan N, et al. In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry. Ann Biomed Eng. 2012;40(8):1760–75.PubMedCrossRefGoogle Scholar
  6. 6.
    Kheradvar A, Gharib M. On mitral valve dynamics and its connection to early diastolic flow. Ann Biomed Eng. 2009;37(1):1–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Reul H, Potthast K. Durability/wear testing of heart valve substitutes. J Heart Valve Dis. 1998;7(2):151–7.PubMedGoogle Scholar
  8. 8.
    Okafor IU, et al. Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics. J Cardiovasc Magn Reson. 2015;17:51.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Jun BH, et al. Effect of hinge gap width of a St. Jude medical bileaflet mechanical heart valve on blood damage potential—an in vitro micro particle image velocimetry study. J Biomech Eng. 2014;136(9):091008.PubMedCrossRefGoogle Scholar
  10. 10.
    5840:2005, A.A.I., Cardiovascular implants—Cardiac valve prostheses. 2005.Google Scholar
  11. 11.
    Administration, F.a.D., Draft Guidance for Industry and FDA Staff: Heart Valves—Investigational Device Exemption (IDE) and Premarket Approval (PMA) Applications, Submitted for Comment, January 20, 2010. 2010.Google Scholar
  12. 12.
    Kelley TA, Marquez S, Popelar CF. In vitro testing of heart valve substitutes. In: Heart valves. New York: Springer; 2013. p. 283–320.CrossRefGoogle Scholar
  13. 13.
    Browne P, et al. Experimental investigation of the steady flow downstream of the St. Jude bileaflet heart valve: a comparison between laser Doppler velocimetry and particle image velocimetry techniques. Ann Biomed Eng. 2000;28(1):39–47.PubMedCrossRefGoogle Scholar
  14. 14.
    Gunning PS, et al. An in vitro evaluation of the impact of eccentric deployment on transcatheter aortic valve hemodynamics. Ann Biomed Eng. 2014;42(6):1195–206.PubMedCrossRefGoogle Scholar
  15. 15.
    King M, et al. A three-dimensional, time-dependent analysis of flow through a bileaflet mechanical heart valve: comparison of experimental and numerical results. J Biomech. 1996;29(5):609–18.PubMedCrossRefGoogle Scholar
  16. 16.
    Gunning PS, Vaughan TJ, McNamara LM. Simulation of self expanding transcatheter aortic valve in a realistic aortic root: implications of deployment geometry on leaflet deformation. Ann Biomed Eng. 2014;42(9):1989–2001.PubMedCrossRefGoogle Scholar
  17. 17.
    Laboratories, D. MP3 Pulse Duplicator. 2015 [cited 2015 10/2/2015]. http://dynateklabs.com/mp3-heart-valve-tester/.
  18. 18.
    Labs, V. ViVitro Labs Pulse Duplicator. 2015 [cited 2015 10/2/2015]. http://vivitrolabs.com/product/pulse-duplicator/.
  19. 19.
    LLC, B.D.C.L. Heart Valve HDT-500 Pulse Duplicator System. 2015 [cited 2015 10/2/2015]. http://www.bdclabs.com/testing-equipment/pulse-duplicator-system/.
  20. 20.
    Laboratories, M.I.T. Heart Valve Pulse Duplicator. 2015 [cited 2015 10/2/2015]. http://www.medicalimplanttestinglab.com/products.html.
  21. 21.
    Boronyak SM, Merryman WD. Development of a simultaneous cryo-anchoring and radiofrequency ablation catheter for percutaneous treatment of mitral valve prolapse. Ann Biomed Eng. 2012;40(9):1971–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Gao B, et al. Effects of papillary muscle position on anterior leaflet stretches under mitral valve edge-to-edge repair. J Heart Valve Dis. 2009;18(2):135–41.PubMedGoogle Scholar
  23. 23.
    Gheewala N, Grande-Allen KJ. Design and mechanical evaluation of a physiological mitral valve organ culture system. Cardiovasc Eng Technol. 2010;1(2):123–31.CrossRefGoogle Scholar
  24. 24.
    Ostli B, et al. In vitro system for measuring chordal force changes following mitral valve patch repair. Cardiovasc Eng Technol. 2012;3(3):263–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Siefert AW, et al. In vitro mitral valve simulator mimics systolic valvular function of chronic ischemic mitral regurgitation ovine model. Ann Thorac Surg. 2013;95(3):825–30.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Spinner EM, et al. In vitro characterization of the mechanisms responsible for functional tricuspid regurgitation. Circulation. 2011;124(8):920–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Vismara R, et al. A pulsatile simulator for the in vitro analysis of the mitral valve with tri-axial papillary muscle displacement. Int J Artif Organs. 2011;34(4):383–91.PubMedCrossRefGoogle Scholar
  28. 28.
    Rabbah JP, Saikrishnan N, Yoganathan AP. A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics. Ann Biomed Eng. 2013;41(2):305–15.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Siefert AW, Siskey RL. Bench models for assessing the mechanics of mitral valve repair and percutaneous surgery. Cardiovasc Eng Technol. 2014;6(2):193–207.PubMedCrossRefGoogle Scholar
  30. 30.
    Bhattacharya S, et al. Tension to passively cinch the mitral annulus through coronary sinus access: an ex vivo study in ovine model. J Biomech. 2014;47(6):1382–8.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Leopaldi AM, et al. In vitro hemodynamics and valve imaging in passive beating hearts. J Biomech. 2012;45(7):1133–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Richards AL, et al. A dynamic heart system to facilitate the development of mitral valve repair techniques. Ann Biomed Eng. 2009;37(4):651–60.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Yamauchi H, et al. Right ventricular papillary muscle approximation as a novel technique of valve repair for functional tricuspid regurgitation in an ex vivo porcine model. J Thorac Cardiovasc Surg. 2012;144(1):235–42.PubMedCrossRefGoogle Scholar
  34. 34.
    He S, et al. Mitral leaflet geometry perturbations with papillary muscle displacement and annular dilatation: an in-vitro study of ischemic mitral regurgitation. J Heart Valve Dis. 2003;12(3):300–7.PubMedGoogle Scholar
  35. 35.
    Pierrakos O, Vlachos PP, Telionis DP. Time-resolved DPIV analysis of vortex dynamics in a left ventricular model through bileaflet mechanical and porcine heart valve prostheses. J Biomech Eng. 2004;126(6):714–26.PubMedCrossRefGoogle Scholar
  36. 36.
    Modersohn D, et al. Isolated hemoperfused heart model of slaughterhouse pigs. Int J Artif Organs. 2001;24(4):215–21.PubMedCrossRefGoogle Scholar
  37. 37.
    de Hart J, et al. An ex vivo platform to simulate cardiac physiology: a new dimension for therapy development and assessment. Int J Artif Organs. 2011;34(6):495–505.PubMedCrossRefGoogle Scholar
  38. 38.
    Broadley K. The Langendorff heart preparation—reappraisal of its role as a research and teaching model for coronary vasoactive drugs. J Pharmacol Methods. 1979;2(2):143–56.CrossRefGoogle Scholar
  39. 39.
    Dixon JA, Spinale FG. Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ Heart Fail. 2009;2(3):262–71.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Edmunds Jr LH, Gorman III JH, Gorman RC. Sheep models of postinfarction left ventricular remodeling. In: Cardiac remodeling and failure. Springer; 2003. p. 231–43.Google Scholar
  41. 41.
    Fomovsky GM, et al. Anisotropic reinforcement of acute anteroapical infarcts improves pump function. Circ Heart Fail. 2012;5(4):515–22.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Jensen H, et al. Three-dimensional assessment of papillary muscle displacement in a porcine model of ischemic mitral regurgitation. J Thorac Cardiovasc Surg. 2010;140(6):1312–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Kalra K, et al. Temporal changes in interpapillary muscle dynamics as an active indicator of mitral valve and left ventricular interaction in ischemic mitral regurgitation. J Am Coll Cardiol. 2014;64(18):1867–79.PubMedCrossRefGoogle Scholar
  44. 44.
    Komeda M, et al. Geometric determinants of ischemic mitral regurgitation. Circulation. 1997;96(9 Suppl):Ii-128–33.Google Scholar
  45. 45.
    Llaneras MR, et al. Large animal model of ischemic mitral regurgitation. Ann Thorac Surg. 1994;57(2):432–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Pedersen HD, Häggström J. Mitral valve prolapse in the dog: a model of mitral valve prolapse in man. Cardiovasc Res. 2000;47(2):234–43.PubMedCrossRefGoogle Scholar
  47. 47.
    Maisano F, et al. A translational “humanised” porcine model for transcatheter mitral valve interventions: the neo inferior vena cava approach. EuroIntervention. 2015;11(1):92–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Shandas R, et al. A general method for estimating deformation and forces imposed in vivo on bioprosthetic heart valves with flexible annuli: in vitro and animal validation studies. J Heart Valve Dis. 2001;10(4):495–504.PubMedGoogle Scholar
  49. 49.
    Hung J, et al. 3D echocardiography: a review of the current status and future directions. J Am Soc Echocardiogr. 2007;20(3):213–33.PubMedCrossRefGoogle Scholar
  50. 50.
    Capoulade R, Pibarot P. Assessment of aortic valve disease: role of imaging modalities. Curr Treat Options Cardiovasc Med. 2015;17(11):49.PubMedCrossRefGoogle Scholar
  51. 51.
    Sucha D, et al. Multimodality imaging assessment of prosthetic heart valves. Circ Cardiovasc Imaging. 2015;8(9):e003703.PubMedCrossRefGoogle Scholar
  52. 52.
    Spinner EM, et al. Altered right ventricular papillary muscle position and orientation in patients with a dilated left ventricle. J Thorac Cardiovasc Surg. 2011;141(3):744–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Stephens SE, et al. High resolution imaging of the mitral valve in the natural state with 7 Tesla MRI. PLoS One. 2017 Aug 30;12(8):e0184042.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Neumann D, et al. Multi-modal pipeline for comprehensive validation of mitral valve geometry and functional computational models. In: Statistical atlases and computational models of the heart. Imaging and modelling challenges. Cham: Springer; 2014. p. 188–95.CrossRefGoogle Scholar
  55. 55.
    Toma M, et al. Fluid-structure interaction analysis of papillary muscle forces using a comprehensive mitral valve model with 3D chordal structure. Ann Biomed Eng. 2016;44(4):942–53.PubMedCrossRefGoogle Scholar
  56. 56.
    Pierce EL, et al. Novel method to track soft tissue deformation by micro-computed tomography: application to the mitral valve. Ann Biomed Eng. 2016;44(7):2273–81.PubMedCrossRefGoogle Scholar
  57. 57.
    Fawzy H, et al. Complete mapping of the tricuspid valve apparatus using three-dimensional sonomicrometry. J Thorac Cardiovasc Surg. 2011;141(4):1037–43.CrossRefGoogle Scholar
  58. 58.
    Gorman JH 3rd, et al. Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J Thorac Cardiovasc Surg. 1996;112(3):712–26.PubMedCrossRefGoogle Scholar
  59. 59.
    Kalejs M, et al. Comparison of radial deformability of stent posts of different aortic bioprostheses. Interact Cardiovasc Thorac Surg. 2013;16(2):129–33.PubMedCrossRefGoogle Scholar
  60. 60.
    Askov JB, et al. Significance of force transfer in mitral valve-left ventricular interaction: in vivo assessment. J Thorac Cardiovasc Surg. 2013;145(6):1635–41.. 1641 e1PubMedCrossRefGoogle Scholar
  61. 61.
    Jensen MO, et al. Mitral valve annular downsizing forces: implications for annuloplasty device development. J Thorac Cardiovasc Surg. 2014;148(1):83–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Redmond J, et al. In-vivo motion of mitral valve annuloplasty devices. J Heart Valve Dis. 2008;17(1):110.PubMedGoogle Scholar
  63. 63.
    Uemura K, et al. Peak systolic mitral annulus velocity reflects the status of ventricular-arterial coupling-theoretical and experimental analyses. J Am Soc Echocardiogr. 2011;24(5):582–91.PubMedCrossRefGoogle Scholar
  64. 64.
    Sonometrics. Basic principles of sonomicrometry. 2015 [cited 2015 10/20/2015]. http://www.sonometrics.com/index-p.html.
  65. 65.
    Bothe W, et al. Rigid, complete annuloplasty rings increase anterior mitral leaflet strains in the normal beating ovine heart. Circulation. 2011;124(11 Suppl):S81–96.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bothe W, et al. How do annuloplasty rings affect mitral annular strains in the normal beating ovine heart? Circulation. 2012;126(11 Suppl 1):S231–8.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Rausch MK, et al. In vivo dynamic strains of the ovine anterior mitral valve leaflet. J Biomech. 2011;44(6):1149–57.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Rausch MK, et al. Characterization of mitral valve annular dynamics in the beating heart. Ann Biomed Eng. 2011;39(6):1690–702.PubMedCrossRefGoogle Scholar
  69. 69.
    Dagum P, et al. Coordinate-free analysis of mitral valve dynamics in normal and ischemic hearts. Circulation. 2000;102(19 Suppl 3):III62–9.PubMedGoogle Scholar
  70. 70.
    Timek TA, et al. Annular height-to-commissural width ratio of annulolasty rings in vivo. Circulation. 2005;112(9 Suppl):I423–8.PubMedGoogle Scholar
  71. 71.
    Timek TA, et al. Aorto-mitral annular dynamics. Ann Thorac Surg. 2003;76(6):1944–50.PubMedCrossRefGoogle Scholar
  72. 72.
    Spinner EM, et al. The effects of a three-dimensional, saddle-shaped annulus on anterior and posterior leaflet stretch and regurgitation of the tricuspid valve. Ann Biomed Eng. 2012;40(5):996–1005.CrossRefGoogle Scholar
  73. 73.
    Jimenez JH, et al. A saddle-shaped annulus reduces systolic strain on the central region of the mitral valve anterior leaflet. J Thorac Cardiovasc Surg. 2007;134(6):1562–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Weiler M, et al. Regional analysis of dynamic deformation characteristics of native aortic valve leaflets. J Biomech. 2011;44(8):1459–65.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Padala M, et al. Mechanics of the mitral valve strut chordae insertion region. J Biomech Eng. 2010;132(8):081004.PubMedCrossRefGoogle Scholar
  76. 76.
    Ritchie J, et al. The material properties of the native porcine mitral valve chordae tendineae: an in vitro investigation. J Biomech. 2006;39(6):1129–35.PubMedCrossRefGoogle Scholar
  77. 77.
    Stearns G, et al. Transcatheter aortic valve implantation can potentially impact short-term and long-term functionality: an in vitro study. Int J Cardiol. 2014;172(3):e421–2.PubMedCrossRefGoogle Scholar
  78. 78.
    Dolensky JR, et al. In vitro assessment of available coaptation area as a novel metric for the quantification of tricuspid valve coaptation. J Biomech. 2013;46(4):832–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Siefert AW, et al. Isolated effect of geometry on mitral valve function for in silico model development. Comput Methods Biomech Biomed Engin. 2015;18(6):618–27.PubMedCrossRefGoogle Scholar
  80. 80.
    Jensen MO, Fontaine AA, Yoganathan AP. Improved in vitro quantification of the force exerted by the papillary muscle on the left ventricular wall: three-dimensional force vector measurement system. Ann Biomed Eng. 2001;29(5):406–13.PubMedCrossRefGoogle Scholar
  81. 81.
    Siefert AW, et al. Quantitative evaluation of annuloplasty on mitral valve chordae tendineae forces to supplement surgical planning model development. Cardiovasc Eng Technol. 2014;5(1):35–43.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Padala M, et al. Comparison of artificial neochordae and native chordal transfer in the repair of a flail posterior mitral leaflet: an experimental study. Ann Thorac Surg. 2013;95(2):629–33.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Rabbah JP, et al. Effects of targeted papillary muscle relocation on mitral leaflet tenting and coaptation. Ann Thorac Surg. 2013;95(2):621–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Jensen MO, et al. Harvested porcine mitral xenograft fixation: impact on fluid dynamic performance. J Heart Valve Dis. 2001;10(1):111–24.PubMedGoogle Scholar
  85. 85.
    Jimenez JH, et al. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann Biomed Eng. 2003;31(10):1171–81.PubMedCrossRefGoogle Scholar
  86. 86.
    Nichols WW, O’Rourke MF, Vlachopoulos C. McDonald’s blood flow in arteries, sixth edition: theoretical, experimental and clinical principles. New York: CRC Press; 2011. p. 768.Google Scholar
  87. 87.
    Jensen JA. Range/velocity limitations for time-domain blood velocity estimation. Ultrasound Med Biol. 1993;19(9):741–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Holland CK, et al. Lower extremity volumetric arterial blood flow in normal subjects. Ultrasound Med Biol. 1998;24(8):1079–86.PubMedCrossRefGoogle Scholar
  89. 89.
    Webster JG. Medical instrumentation: application and design. New York: Wiley; 2008.Google Scholar
  90. 90.
    Shiota T. Clinical application of 3-dimensional echocardiography in the USA. Circ J. 2015;79(11):2287–98.PubMedCrossRefGoogle Scholar
  91. 91.
    Saikrishnan N, et al. Accurate assessment of aortic stenosis: a review of diagnostic modalities and hemodynamics. Circulation. 2014;129(2):244–53.PubMedCrossRefGoogle Scholar
  92. 92.
    Tsujino H, et al. Combination of pulsed-wave Doppler and real-time three-dimensional color Doppler echocardiography for quantifying the stroke volume in the left ventricular outflow tract. Ultrasound Med Biol. 2004;30(11):1441–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Hansen KL, et al. First report on intraoperative vector flow imaging of the heart among patients with healthy and diseased aortic valves. Ultrasonics. 2015;56:243–50.PubMedCrossRefGoogle Scholar
  94. 94.
    Cape EG, et al. A new method for noninvasive quantification of valvular regurgitation based on conservation of momentum. In vitro validation. Circulation. 1989;79(6):1343–53.PubMedCrossRefGoogle Scholar
  95. 95.
    Zoghbi WA, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003;16(7):777–802.PubMedCrossRefGoogle Scholar
  96. 96.
    Yap CH, et al. Novel method of measuring valvular regurgitation using three-dimensional nonlinear curve fitting of Doppler signals within the flow convergence zone. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60(7):1295–311.PubMedCrossRefGoogle Scholar
  97. 97.
    Yosefy C, et al. Direct measurement of vena contracta area by real-time 3-dimensional echocardiography for assessing severity of mitral regurgitation. Am J Cardiol. 2009;104(7):978–83.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Pierce EL, et al. Three-dimensional field optimization method: gold-standard validation of a novel color Doppler method for quantifying mitral regurgitation. J Am Soc Echocardiogr. 2016;29(10):917–25.PubMedCrossRefGoogle Scholar
  99. 99.
    Hochareon P, et al. Diaphragm motion affects flow patterns in an artificial heart. Artif Organs. 2003;27(12):1102–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Yoganathan AP, et al. Bileaflet, tilting disk and porcine aortic-valve substitutes—in vitro hydrodynamic characteristics. J Am Coll Cardiol. 1984;3(2):313–20.PubMedCrossRefGoogle Scholar
  101. 101.
    Raffel M, et al. Particle image velocimetry: a practical guide. Berlin: Springer; 2013.Google Scholar
  102. 102.
    Seaman C, Akingba AG, Sucosky P. Steady flow hemodynamic and energy loss measurements in Normal and simulated calcified tricuspid and bicuspid aortic valves. J Biomech Eng Trans ASME. 2014;136(4):11.CrossRefGoogle Scholar
  103. 103.
    Jun BH, Saikrishnan N, Yoganathan AP. Micro particle image velocimetry measurements of steady diastolic leakage flow in the hinge of a St. Jude Medical® Regent™ mechanical heart valve. Ann Biomed Eng. 2014;42(3):526–40.PubMedCrossRefGoogle Scholar
  104. 104.
    Westerdale JC, et al. Effects of bileaflet mechanical mitral valve rotational orientation on left ventricular flow conditions. Open Cardiovasc Med J. 2015;9:62–8.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Bellofiore A, Quinlan NJ. High-resolution measurement of the unsteady velocity field to evaluate blood damage induced by a mechanical heart valve. Ann Biomed Eng. 2011;39(9):2417–29.PubMedCrossRefGoogle Scholar
  106. 106.
    Kadem L, et al. Flow-dependent changes in Doppler-derived aortic valve effective orifice area are real and not due to artifact. J Am Coll Cardiol. 2006;47(1):131–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Manning KB, et al. Regurgitant flow field characteristics of the St. Jude bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry. Artif Organs. 2003;27(9):840–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Kheradvar A, et al. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J Am Soc Echocardiogr. 2010;23(1):86–94.PubMedCrossRefGoogle Scholar
  109. 109.
    Kim HB, Hertzberg JR, Shandas R. Development and validation of echo PIV. Exp Fluids. 2004;36(3):455–62.CrossRefGoogle Scholar
  110. 110.
    Westerdale J, et al. Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry. J Ultrasound Med. 2011;30(2):187–95.PubMedCrossRefGoogle Scholar
  111. 111.
    Maymir JC, et al. Mean velocity and Reynolds stress measurements in the regurgitant jets of tilting disk heart valves in an artificial heart environment. Ann Biomed Eng. 1998;26(1):146–56.PubMedCrossRefGoogle Scholar
  112. 112.
    Simon HA, et al. Comparison of the hinge flow fields of two bileaflet mechanical heart valves under aortic and mitral conditions. Ann Biomed Eng. 2004;32(12):1607–17.PubMedCrossRefGoogle Scholar
  113. 113.
    Herbertson LH, Deutsch S, Manning KB. Near valve flows and potential blood damage during closure of a bileaflet mechanical heart valve. J Biomech Eng Trans ASME. 2011;133(9):7.CrossRefGoogle Scholar
  114. 114.
    Yap CH, et al. Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Biomech Model Mechanobiol. 2012;11(1–2):171–82.CrossRefGoogle Scholar
  115. 115.
    Ellis JT, Travis BR, Yoganathan AP. An in vitro study of the hinge and near-field forward flow dynamics of the St. Jude Medical® Regent™ bileaflet mechanical heart valve. Ann Biomed Eng. 2000;28(5):524–32.PubMedCrossRefGoogle Scholar
  116. 116.
    Pennekamp W, et al. Determination of flow profiles of different mechanical aortic valve prostheses using phase-contrast MRI. J Cardiovasc Surg. 2011;52(2):277–84.Google Scholar
  117. 117.
    Kvitting JPE, et al. In vitro assessment of flow patterns and turbulence intensity in prosthetic heart valves using generalized phase-contrast MRI. J Magn Reson Imaging. 2010;31(5):1075–80.PubMedCrossRefGoogle Scholar
  118. 118.
    Kim SJ et al. Dynamic 3-dimensional phase-contrast technique in MRI: application to complex flow analysis around the artificial heart valve. In: Conference on physiology and function from multidimensional images—medical imaging 1998. 1998. San Diego, CA: SpIE-International Society of Optical Engineering; 1998Google Scholar
  119. 119.
    Kumar R, et al. Assessment of left ventricular diastolic function using 4-dimensional phase-contrast cardiac magnetic resonance. J Comput Assist Tomogr. 2011;35(1):108–12.PubMedCrossRefGoogle Scholar
  120. 120.
    Kvitting JPE, et al. Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery. J Thorac Cardiovasc Surg. 2004;127(6):1602–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Yokosawa S, et al. Quantitative measurements on the human ascending aortic flow using 2D cine phase-contrast magnetic resonance imaging. JSME Int J Ser C Mech Syst Mach Elem Manufact. 2005;48(4):459–67.CrossRefGoogle Scholar
  122. 122.
    Jackson M, et al. Development of a multi-modality compatible flow loop system for the functional assessment of mitral valve prostheses. Cardiovasc Eng Technol. 2014;5(1):13–24.CrossRefGoogle Scholar
  123. 123.
    Carlsson M, et al. Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am J Phys Heart Circ Phys. 2012;302(4):H893–900.Google Scholar
  124. 124.
    Delles M et al. Non-invasive computation of aortic pressure maps: a phantom-based study of two approaches. In: Conference on medical imaging—biomedical applications in molecular, structural, and functional imaging. San Diego, CA: SPIE-International Society of Optical Engineering; 2014.Google Scholar
  125. 125.
    Markl M, et al. Generalized reconstruction of phase contrast MRI: analysis and correction of the effect of gradient field distortions. Magn Reson Med. 2003;50(4):791–801.PubMedCrossRefGoogle Scholar
  126. 126.
    Bernstein MA, et al. Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med. 1998;39(2):300–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Levine RA, et al. Mitral valve disease-morphology and mechanisms. Nat Rev Cardiol. 2015;12(12):689–710.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Ingels NB, Karlsson M. Mitral valve mechanics. Dropbox. 2014. p. 1.Google Scholar
  129. 129.
    Smerup M, et al. Strut chordal-sparing mitral valve replacement preserves long-term left ventricular shape and function in pigs. J Thorac Cardiovasc Surg. 2005;130(6):1675–82.PubMedCrossRefGoogle Scholar
  130. 130.
    Ropcke DM, et al. Papillary muscle force distribution after total tricuspid reconstruction using porcine extracellular matrix: in-vitro valve characterization. J Heart Valve Dis. 2014;23(6):788–94.PubMedGoogle Scholar
  131. 131.
    Ropcke DM, et al. Functional and biomechanical performance of stentless extracellular matrix tricuspid tube graft: an acute experimental porcine evaluation. Ann Thorac Surg. 2016;101(1):125–32.PubMedCrossRefGoogle Scholar
  132. 132.
    Askov JB, et al. Papillary muscle force transducer for measurement in vivo. Cardiovasc Eng Technol. 2011;2(3):196–202.CrossRefGoogle Scholar
  133. 133.
    Nielsen SL, et al. Miniature C-shaped transducers for chordae tendineae force measurements. Ann Biomed Eng. 2004;32(8):1050–7.PubMedCrossRefGoogle Scholar
  134. 134.
    Troxler LG, Spinner EM, Yoganathan AP. Measurement of strut chordal forces of the tricuspid valve using miniature C ring transducers. J Biomech. 2012;45(6):1084–91.PubMedCrossRefGoogle Scholar
  135. 135.
    Jimenez JH, et al. Mitral valve function and chordal force distribution using a flexible annulus model: an in vitro study. Ann Biomed Eng. 2005;33(5):557–66.PubMedCrossRefGoogle Scholar
  136. 136.
    Nielsen SL, et al. Imbalanced chordal force distribution causes acute ischemic mitral regurgitation: mechanistic insights from chordae tendineae force measurements in pigs. J Thorac Cardiovasc Surg. 2005;129(3):525–31.PubMedCrossRefGoogle Scholar
  137. 137.
    Lomholt M, et al. Differential tension between secondary and primary mitral chordae in an acute in-vivo porcine model. J Heart Valve Dis. 2002;11(3):337–45.PubMedGoogle Scholar
  138. 138.
    He Z, Jowers C. A novel method to measure mitral valve chordal tension. J Biomech Eng. 2009;131(1):014501.PubMedCrossRefGoogle Scholar
  139. 139.
    Nielsen SL, et al. Chordal force distribution determines systolic mitral leaflet configuration and severity of functional mitral regurgitation. J Am Coll Cardiol. 1999;33(3):843–53.PubMedCrossRefGoogle Scholar
  140. 140.
    Granier M, et al. Consequences of mitral valve prolapse on chordal tension: ex vivo and in vivo studies in large animal models. J Thorac Cardiovasc Surg. 2011;142(6):1585–7.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Levine RA, et al. Mechanistic insights into functional mitral regurgitation. Curr Cardiol Rep. 2002;4(2):125–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Jensen H, et al. Transapical neochord implantation: is tension of artificial chordae tendineae dependent on the insertion site? J Thorac Cardiovasc Surg. 2014;148(1):138–43.PubMedCrossRefGoogle Scholar
  143. 143.
    Nielsen SL, et al. Mitral ring annuloplasty relieves tension of the secondary but not primary chordae tendineae in the anterior mitral leaflet. J Thorac Cardiovasc Surg. 2011;141(3):732–7.PubMedCrossRefGoogle Scholar
  144. 144.
    He Z, Bhattacharya S. Mitral valve annulus tension and the mechanism of annular dilation: an in-vitro study. J Heart Valve Dis. 2010;19(6):701–7.PubMedGoogle Scholar
  145. 145.
    Medtronic, Simulus® Flexible Annuloplasty System. Marketing Literature. 2015. p. 2.Google Scholar
  146. 146.
    Edwards Lifesciences. Carpentier-Edwards Physio II Annuloplasty Ring. Marketing Literature. 2015. p. 1.Google Scholar
  147. 147.
    Jensen MO, et al. Saddle-shaped mitral valve annuloplasty rings experience lower forces compared with flat rings. Circulation. 2008;118(14 Suppl):S250–5.PubMedCrossRefGoogle Scholar
  148. 148.
    Rausch MK, et al. Mitral valve annuloplasty: a quantitative clinical and mechanical comparison of different annuloplasty devices. Ann Biomed Eng. 2012;40(3):750–61.PubMedCrossRefGoogle Scholar
  149. 149.
    Hasenkam JM, et al. What force can the myocardium generate on a prosthetic mitral valve ring? An animal experimental study. J Heart Valve Dis. 1994;3(3):324–9.PubMedGoogle Scholar
  150. 150.
    Siefert AW, et al. Dynamic assessment of mitral annular force profile in an ovine model. Ann Thorac Surg. 2012;94(1):59–65.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Siefert AW, et al. In-vivo transducer to measure dynamic mitral annular forces. J Biomech. 2012;45(8):1514–6.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Skov SN, et al. New mitral annular force transducer optimized to distinguish annular segments and multi-plane forces. J Biomech. 2016;49(5):742–8.PubMedCrossRefGoogle Scholar
  153. 153.
    Kragsnaes ES, et al. In-plane tricuspid valve force measurements: development of a strain gauge instrumented annuloplasty ring. Cardiovasc Eng Technol. 2013;4(2):131–8.CrossRefGoogle Scholar
  154. 154.
    Skov SN, et al. Simultaneous in- and out-of-plane mitral valve annular force measurements. Cardiovasc Eng Technol. 2015;6(2):185–92.PubMedCrossRefGoogle Scholar
  155. 155.
    Chitwood WR Jr, et al. Robotic mitral valve repairs in 300 patients: a single-center experience. J Thorac Cardiovasc Surg. 2008;136(2):436–41.PubMedCrossRefGoogle Scholar
  156. 156.
    Siefert AW, et al. Suture forces in undersized mitral annuloplasty: novel device and measurements. Ann Thorac Surg. 2014;98(1):305–9.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Jimenez JH, et al. Effects of annular size, transmitral pressure, and mitral flow rate on the edge-to-edge repair: an in vitro study. Ann Thorac Surg. 2006;82(4):1362–8.PubMedCrossRefGoogle Scholar
  158. 158.
    Timek TA, et al. Mitral annular size predicts Alfieri stitch tension in mitral edge-to-edge repair. J Heart Valve Dis. 2004;13(2):165–73.PubMedGoogle Scholar
  159. 159.
    Jensen MO, et al. External approach to in vivo force measurement on mitral valve traction suture. J Biomech. 2012;45(5):908–12.PubMedCrossRefGoogle Scholar
  160. 160.
    Jensen H, et al. Impact of papillary muscle relocation as adjunct procedure to mitral ring annuloplasty in functional ischemic mitral regurgitation. Circulation. 2009;120(11 Suppl):S92–8.PubMedCrossRefGoogle Scholar
  161. 161.
    Pokorny S, et al. In vivo quantification of the apical fixation forces of different mitral valved stent designs in the beating heart. Ann Biomed Eng. 2015;43(5):1201–9.PubMedCrossRefGoogle Scholar
  162. 162.
    Timek TA, et al. Septal-lateral annular cinching (‘SLAC’) reduces mitral annular size without perturbing normal annular dynamics. J Heart Valve Dis. 2002;11(1):2–9.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Morten O. Jensen
    • 1
  • Andrew W. Siefert
    • 2
  • Ikechukwu Okafor
    • 3
  • Ajit P. Yoganathan
    • 3
    • 4
    Email author
  1. 1.Department of Biomedical EngineeringUniversity of ArkansasFayettevilleUSA
  2. 2.Cardiac Implants LLCTarrytownUSA
  3. 3.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA
  4. 4.Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations