Advertisement

Endothelial Mechanotransduction

  • James N. WarnockEmail author
Chapter

Abstract

The aortic valve resides in a dynamic mechanical environment, with constant exposure to fluid shear stresses and cyclic strain. These physical forces directly impact the valve endothelium and these cells will regulate the biological response of the valve. Under normal physiological conditions, the endothelium provides a monolayer that protects the valve tissue. However, under abnormal conditions, a cascade of events can lead to a loss of integrity in the endothelium, expression of pro-inflammatory molecules that recruit monocytes to the tissue and paracrine signaling that could cause degradation of the valve tissue and extracellular matrix. Understanding the molecular events caused by changes in the mechanical environment is paramount in the identification of biomolecular markers for disease diagnosis and in the development of novel therapeutic strategies that could alleviate the need for surgical intervention.

Keywords

Shear stress Cyclic strain Mechanobiology Fibrosa Ventricularis Aortic stenosis Aortic valve disease 

References

  1. 1.
    Mofrad MR, Kamm RD. Cellular mechanotransduction: diverse perspectives from molecules to tissues. Cambridge: Cambridge University Press; 2009.CrossRefGoogle Scholar
  2. 2.
    Konduri S, Xing Y, Warnock JN, He Z, Yoganathan AP. Normal physiological conditions maintain the biological characteristics of porcine aortic heart valves: an ex vivo organ culture study. Ann Biomed Eng. 2005;33(9):1158–66.PubMedCrossRefGoogle Scholar
  3. 3.
    Smith KE, Metzler SA, Warnock JN. Cyclic strain inhibits acute pro-inflammatory gene expression in aortic valve interstitial cells. Biomech Model Mechanobiol. 2010;9(1):117–25.PubMedCrossRefGoogle Scholar
  4. 4.
    Back M, Gasser TC, Michel JB, Caligiuri G. Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc Res. 2013;99(2):232–41.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Balachandran K, Konduri S, Sucosky P, Jo H, Yoganathan AP. An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann Biomed Eng. 2006;34(11):1655–65.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Fisher CI, Chen J, Merryman WD. Calcific nodule morphogenesis by heart valve interstitial cells is strain dependent. Biomech Model Mechanobiol. 2013;12(1):5–17.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Merryman WD, Schoen FJ. Mechanisms of calcification in aortic valve disease: role of mechanokinetics and mechanodynamics. Curr Cardiol Rep. 2013;15(5):355.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Metzler SA, Digesu CS, Howard JI, Filip To SD, Warnock JN. Live en face imaging of aortic valve leaflets under mechanical stress. Biomech Model Mechanobiol. 2012;11(3–4):355–61.PubMedCrossRefGoogle Scholar
  9. 9.
    Metzler SA, Pregonero CA, Butcher JT, Burgess SC, Warnock JN. Cyclic strain regulates pro-inflammatory protein expression in porcine aortic valve endothelial cells. J Heart Valve Dis. 2008;17(5):571–7; discussion 8.PubMedGoogle Scholar
  10. 10.
    Heckel E, Boselli F, Roth S, Krudewig A, Belting HG, Charvin G, et al. Oscillatory flow modulates mechanosensitive klf2a expression through trpv4 and trpp2 during heart valve development. Curr Biol. 2015;25(10):1354–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Tan H, Biechler S, Junor L, Yost MJ, Dean D, Li J, et al. Fluid flow forces and rhoA regulate fibrous development of the atrioventricular valves. Dev Biol. 2013;374(2):345–56.PubMedCrossRefGoogle Scholar
  12. 12.
    Nicosia MA, Cochran RP, Einstein DR, Rutland CJ, Kunzelman KS. A coupled fluid-structure finite element model of the aortic valve and root. J Heart Valve Dis. 2003;12(6):781–9.PubMedGoogle Scholar
  13. 13.
    Ge L, Sotiropoulos F. Direction and magnitude of blood flow shear stresses on the leaflets of aortic valves: is there a link with valve calcification? J Biomech Eng. 2010;132(1):014505.PubMedCrossRefGoogle Scholar
  14. 14.
    Weston MW, LaBorde DV, Yoganathan AP. Estimation of the shear stress on the surface of an aortic valve leaflet. Ann Biomed Eng. 1999;27(4):572–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Yap CH, Saikrishnan N, Yoganathan AP. Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet. Biomech Model Mechanobiol. 2012;11(1–2):231–44.PubMedCrossRefGoogle Scholar
  16. 16.
    Yap CH, Saikrishnan N, Tamilselvan G, Yoganathan AP. Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Biomech Model Mechanobiol. 2012;11(1–2):171–82.PubMedCrossRefGoogle Scholar
  17. 17.
    Yap CH, Kim HS, Balachandran K, Weiler M, Haj-Ali R, Yoganathan AP. Dynamic deformation characteristics of porcine aortic valve leaflet under normal and hypertensive conditions. Am J Physiol Heart Circ Physiol. 2010;298(2):H395–405.PubMedCrossRefGoogle Scholar
  18. 18.
    Loufrani L, Retailleau K, Bocquet A, Dumont O, Danker K, Louis H, et al. Key role of alpha(1)beta(1)-integrin in the activation of PI3-kinase-Akt by flow (shear stress) in resistance arteries. Am J Physiol Heart Circ Physiol. 2008;294(4):H1906–13.PubMedCrossRefGoogle Scholar
  19. 19.
    Jalali S, del Pozo MA, Chen K, Miao H, Li Y, Schwartz MA, et al. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci U S A. 2001;98(3):1042–6.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Chen KD, Li YS, Kim M, Li S, Yuan S, Chien S, et al. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem. 1999;274(26):18393–400.PubMedCrossRefGoogle Scholar
  21. 21.
    Muller JM, Chilian WM, Davis MJ. Integrin signaling transduces shear stress-dependent vasodilation of coronary arterioles. Circ Res. 1997;80(3):320–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Tzima E, del Pozo MA, Shattil SJ, Chien S, Schwartz MA. Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J. 2001;20(17):4639–47.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Wang Y, Miao H, Li S, Chen KD, Li YS, Yuan S, et al. Interplay between integrins and FLK-1 in shear stress-induced signaling. Am J Physiol Cell Physiol. 2002;283(5):C1540–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Brakemeier S, Kersten A, Eichler I, Grgic I, Zakrzewicz A, Hopp H, et al. Shear stress-induced up-regulation of the intermediate-conductance Ca(2+)-activated K(+) channel in human endothelium. Cardiovasc Res. 2003;60(3):488–96.PubMedCrossRefGoogle Scholar
  25. 25.
    Lieu DK, Pappone PA, Barakat AI. Differential membrane potential and ion current responses to different types of shear stress in vascular endothelial cells. Am J Physiol Cell Physiol. 2004;286(6):C1367–75.PubMedCrossRefGoogle Scholar
  26. 26.
    Olesen SP, Clapham DE, Davies PF. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature. 1988;331(6152):168–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Naruse K, Sai X, Yokoyama N, Sokabe M. Uni-axial cyclic stretch induces c-src activation and translocation in human endothelial cells via SA channel activation. FEBS Lett. 1998;441(1):111–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Naruse K, Sokabe M. Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am J Phys. 1993;264(4 Pt 1):C1037–44.CrossRefGoogle Scholar
  29. 29.
    Naruse K, Yamada T, Sokabe M. Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. Am J Phys. 1998;274(5 Pt 2):H1532–8.Google Scholar
  30. 30.
    Tatsukawa Y, Kiyosue T, Arita M. Mechanical stretch increases intracellular calcium concentration in cultured ventricular cells from neonatal rats. Heart Vessel. 1997;12(3):128–35.CrossRefGoogle Scholar
  31. 31.
    Jin ZG, Wong C, Wu J, Berk BC. Flow shear stress stimulates Gab1 tyrosine phosphorylation to mediate protein kinase B and endothelial nitric-oxide synthase activation in endothelial cells. J Biol Chem. 2005;280(13):12305–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Otte LA, Bell KS, Loufrani L, Yeh JC, Melchior B, Dao DN, et al. Rapid changes in shear stress induce dissociation of a G alpha(q/11)-platelet endothelial cell adhesion molecule-1 complex. J Physiol. 2009;587.(Pt 10:2365–73.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wang S, Iring A, Strilic B, Albarran Juarez J, Kaur H, Troidl K, et al. P2Y(2) and Gq/G(1)(1) control blood pressure by mediating endothelial mechanotransduction. J Clin Invest. 2015;125(8):3077–86.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Zeng H, Zhao D, Yang S, Datta K, Mukhopadhyay D. Heterotrimeric G alpha q/G alpha 11 proteins function upstream of vascular endothelial growth factor (VEGF) receptor-2 (KDR) phosphorylation in vascular permeability factor/VEGF signaling. J Biol Chem. 2003;278(23):20738–45.PubMedCrossRefGoogle Scholar
  35. 35.
    Secomb TW, Hsu R, Pries AR. Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. Biorheology. 2001;38(2–3):143–50.PubMedGoogle Scholar
  36. 36.
    Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC. Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci U S A. 2003;100(13):7988–95.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454(3):345–59.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Salmon AH, Satchell SC. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol. 2012;226(4):562–74.PubMedCrossRefGoogle Scholar
  39. 39.
    Tarbell JM, Ebong EE. The endothelial glycocalyx: a mechano-sensor and -transducer. Sci Signal. 2008;1(40):pt8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Tarbell JM, Pahakis MY. Mechanotransduction and the glycocalyx. J Intern Med. 2006;259(4):339–50.PubMedCrossRefGoogle Scholar
  41. 41.
    Smith ML, Long DS, Damiano ER, Ley K. Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys J. 2003;85(1):637–45.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Davies P, Helmke B. Endothelial mechanotransduction. In: Mofrad MR, Kamm RD, editors. Cellular mechanotransduction. New York: Cambridge University Press; 2009.Google Scholar
  43. 43.
    Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 2006;20(7):811–27.PubMedCrossRefGoogle Scholar
  44. 44.
    Ingber DE, Wang N, Stamenovic D. Tensegrity, cellular biophysics, and the mechanics of living systems. Rep Prog Phys. 2014;77(4):046603.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA. Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol. 2013;23(11):1024–30.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Coon BG, Baeyens N, Han J, Budatha M, Ross TD, Fang JS, et al. Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. J Cell Biol. 2015;208(7):975–86.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 2005;437(7057):426–31.PubMedCrossRefGoogle Scholar
  48. 48.
    Helmke BP, Davies PF. The cytoskeleton under external fluid mechanical forces: hemodynamic forces acting on the endothelium. Ann Biomed Eng. 2002;30(3):284–96.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, et al. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol. 1997;29(3):630–4.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    O'Brien KD. Pathogenesis of calcific aortic valve disease: a disease process comes of age (and a good deal more). Arterioscler Thromb Vasc Biol. 2006;26(8):1721–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Elmariah S, Mohler ER 3rd. The pathogenesis and treatment of the valvulopathy of aortic stenosis: beyond the SEAS. Curr Cardiol Rep. 2010;12(2):125–32.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kaden JJ, Dempfle CE, Grobholz R, Tran HT, Kilic R, Sarikoc A, et al. Interleukin-1 beta promotes matrix metalloproteinase expression and cell proliferation in calcific aortic valve stenosis. Atherosclerosis. 2003;170(2):205–11.PubMedCrossRefGoogle Scholar
  53. 53.
    Edep ME, Shirani J, Wolf P, Brown DL. Matrix metalloproteinase expression in nonrheumatic aortic stenosis. Cardiovasc Pathol. 2000;9(5):281–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Kaden JJ, Vocke DC, Fischer CS, Grobholz R, Brueckmann M, Vahl CF, et al. Expression and activity of matrix metalloproteinase-2 in calcific aortic stenosis. Z Kardiol. 2004;93(2):124–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Soini Y, Satta J, Maatta M, Autio-Harmainen H. Expression of MMP2, MMP9, MT1-MMP, TIMP1, and TIMP2 mRNA in valvular lesions of the heart. J Pathol. 2001;194(2):225–31.PubMedCrossRefGoogle Scholar
  56. 56.
    Chen JH, Simmons CA. Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues. Circ Res. 2011;108(12):1510–24.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Hinton RB Jr, Lincoln J, Deutsch GH, Osinska H, Manning PB, Benson DW, et al. Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res. 2006;98(11):1431–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O'Brien KD. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation. 1994;90(2):844–53.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Butcher JT, Nerem RM. Valvular endothelial cells and the mechanoregulation of valvular pathology. Philos Trans R Soc B Biol Sci. 2007;362(1484):1445–57.CrossRefGoogle Scholar
  60. 60.
    Agmon Y, Khandheria BK, Meissner I, Sicks JR, O'Fallon WM, Wiebers DO, et al. Aortic valve sclerosis and aortic atherosclerosis: different manifestations of the same disease? Insights from a population-based study. J Am Coll Cardiol. 2001;38(3):827–34.PubMedCrossRefGoogle Scholar
  61. 61.
    Mohler ER 3rd. Mechanisms of aortic valve calcification. Am J Cardiol. 2004;94(11):1396–402. A6PubMedCrossRefGoogle Scholar
  62. 62.
    Otto CM, O'Brien KD. Why is there discordance between calcific aortic stenosis and coronary artery disease? Heart. 2001;85(6):601–2.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Butcher JT, Mahler GJ, Hockaday LA. Aortic valve disease and treatment: the need for naturally engineered solutions. Adv Drug Deliv Rev. 2011;63(4–5):242–68.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Davies P, Reidy M, Goode T, Bowyer D. Scanning electron microscopy in the evaluation of endothelial integrity of the fatty lesion in atherosclerosis. Atherosclerosis. 1976;25(1):125–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Reinhart-King CA, Fujiwara K, Berk BC. Physiologic stress-mediated signaling in the endothelium. Methods Enzymol. 2008;443:25–44.PubMedCrossRefGoogle Scholar
  66. 66.
    Frangos J, Eskin S, McIntire L, Ives C. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 1985;227(4693):1477–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Levesque MJ, Nerem RM. The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng. 1985;107(4):341–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Butcher JT, Penrod AM, Garcia AJ, Nerem RM. Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler Thromb Vasc Biol. 2004;24(8):1429–34.PubMedCrossRefGoogle Scholar
  69. 69.
    Davies PF, Passerini AG, Simmons CA. Aortic valve: turning over a new leaf(let) in endothelial phenotypic heterogeneity. Arterioscler Thromb Vasc Biol. 2004;24(8):1331–3.PubMedCrossRefGoogle Scholar
  70. 70.
    Butcher JT, Tressel S, Johnson T, Turner D, Sorescu G, Jo H, et al. Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler Thromb Vasc Biol. 2006;26(1):69–77.PubMedCrossRefGoogle Scholar
  71. 71.
    Chen XL, Grey JY, Thomas S, Qiu FH, Medford RM, Wasserman MA, et al. Sphingosine kinase-1 mediates TNF-alpha-induced MCP-1 gene expression in endothelial cells: upregulation by oscillatory flow. Am J Physiol Heart Circ Physiol. 2004;287(4):H1452–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Guo D, Chien S, Shyy JY. Regulation of endothelial cell cycle by laminar versus oscillatory flow: distinct modes of interactions of AMP-activated protein kinase and Akt pathways. Circ Res. 2007;100(4):564–71.PubMedCrossRefGoogle Scholar
  73. 73.
    Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 1981;103(3):177–85.PubMedCrossRefGoogle Scholar
  74. 74.
    Remuzzi A, Dewey CF Jr, Davies PF, Gimbrone MA Jr. Orientation of endothelial cells in shear fields in vitro. Biorheology. 1984;21(4):617–30.PubMedCrossRefGoogle Scholar
  75. 75.
    Go Y-M, Boo YC, Park H, Maland MC, Patel R, Pritchard KA, et al. Protein kinase B/Akt activates c-Jun NH2-terminal kinase by increasing NO production in response to shear stress. J Appl Physiol. 2001;91(4):1574–81.PubMedCrossRefGoogle Scholar
  76. 76.
    Sorescu GP, Song H, Tressel SL, Hwang J, Dikalov S, Smith DA, et al. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Circ Res. 2004;95(8):773–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Sorescu GP, Sykes M, Weiss D, Platt MO, Saha A, Hwang J, et al. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response. J Biol Chem. 2003;278(33):31128–35.PubMedCrossRefGoogle Scholar
  78. 78.
    Platt MO, Xing Y, Jo H, Yoganathan AP. Cyclic pressure and shear stress regulate matrix metalloproteinases and cathepsin activity in porcine aortic valves. J Heart Valve Dis. 2006;15(5):622–9.PubMedGoogle Scholar
  79. 79.
    Sucosky P, Balachandran K, Elhammali A, Jo H, Yoganathan AP. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway. Arterioscler Thromb Vasc Biol. 2009;29(2):254–60.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Sucosky P, Padala M, Elhammali A, Balachandran K, Jo H, Yoganathan AP. Design of an ex vivo culture system to investigate the effects of shear stress on cardiovascular tissue. J Biomech Eng. 2008;130(3):035001.PubMedCrossRefGoogle Scholar
  81. 81.
    Weston MW, Yoganathan AP. Biosynthetic activity in heart valve leaflets in response to in vitro flow environments. Ann Biomed Eng. 2001;29(9):752–63.PubMedCrossRefGoogle Scholar
  82. 82.
    Butcher JT, Nerem RM. Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress. Tissue Eng. 2006;12(4):905–15.PubMedCrossRefGoogle Scholar
  83. 83.
    McIntosh CT, Warnock JN. Side-specific characterization of aortic valve endothelial cell adhesion molecules under cyclic strain. J Heart Valve Dis. 2013;22(5):631–9.PubMedGoogle Scholar
  84. 84.
    Carrion K, Dyo J, Patel V, Sasik R, Mohamed SA, Hardiman G, et al. The long non-coding HOTAIR is modulated by cyclic stretch and WNT/β-CATENIN in human aortic valve cells and is a novel repressor of calcification genes. PLoS One. 2014;9(5):e96577.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Takeda H, Komori K, Nishikimi N, Nimura Y, Sokabe M, Naruse K. Bi-phasic activation of eNOS in response to uni-axial cyclic stretch is mediated by differential mechanisms in BAECs. Life Sci. 2006;79(3):233–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Engelmayr GC Jr, Hildebrand DK, Sutherland FW, Mayer JE Jr, Sacks MS. A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials. 2003;24(14):2523–32.PubMedCrossRefGoogle Scholar
  87. 87.
    Engelmayr GC Jr, Rabkin E, Sutherland FW, Schoen FJ, Mayer JE Jr, Sacks MS. The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue. Biomaterials. 2005;26(2):175–87.PubMedCrossRefGoogle Scholar
  88. 88.
    Merryman WD, Lukoff HD, Long RA, Engelmayr GC Jr, Hopkins RA, Sacks MS. Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast. Cardiovasc Pathol. 2007;16(5):268–76.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Engelmayr GC Jr, Soletti L, Vigmostad SC, Budilarto SG, Federspiel WJ, Chandran KB, et al. A novel flex-stretch-flow bioreactor for the study of engineered heart valve tissue mechanobiology. Ann Biomed Eng. 2008;36(5):700–12.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Masoumi N, Howell MC, Johnson KL, Niesslein MJ, Gerber G, Engelmayr GC Jr. Design and testing of a cyclic stretch and flexure bioreactor for evaluating engineered heart valve tissues based on poly(glycerol sebacate) scaffolds. Proc Inst Mech Eng H J Eng Med. 2014;228(6):576–86.CrossRefGoogle Scholar
  91. 91.
    Warnock JN, Konduri S, He Z, Yoganathan AP. Design of a sterile organ culture system for the ex vivo study of aortic heart valves. J Biomech Eng. 2005;127(5):857–61.PubMedCrossRefGoogle Scholar
  92. 92.
    Durst CA, Jane Grande-Allen K. Design and physical characterization of a synchronous multivalve aortic valve culture system. Ann Biomed Eng. 2010;38(2):319–25.PubMedCrossRefGoogle Scholar
  93. 93.
    Deck JD. Endothelial cell orientation on aortic valve leaflets. Cardiovasc Res. 1986;20(10):760–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Butcher JT, Simmons CA, Warnock JN. Mechanobiology of the aortic heart valve. J Heart Valve Dis. 2008;17(1):62–73.PubMedGoogle Scholar
  95. 95.
    Simmons CA, Grant GR, Manduchi E, Davies PF. Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ Res. 2005;96(7):792–9.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Suga S, Itoh H, Komatsu Y, Ogawa Y, Hama N, Yoshimasa T, et al. Cytokine-induced C-type natriuretic peptide (CNP) secretion from vascular endothelial cells--evidence for CNP as a novel autocrine/paracrine regulator from endothelial cells. Endocrinology. 1993;133(6):3038–41.PubMedCrossRefGoogle Scholar
  97. 97.
    La M, Cao TV, Cerchiaro G, Chilton K, Hirabayashi J, Kasai K, et al. A novel biological activity for galectin-1: inhibition of leukocyte-endothelial cell interactions in experimental inflammation. Am J Pathol. 2003;163(4):1505–15.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Farrar EJ, Huntley GD, Butcher J. Endothelial-derived oxidative stress drives myofibroblastic activation and calcification of the aortic valve. PLoS One. 2015;10(4):e0123257.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Bosse K, Hans CP, Zhao N, Koenig SN, Huang N, Guggilam A, et al. Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease. J Mol Cell Cardiol. 2013;60:27–35.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    El-Hamamsy I, Balachandran K, Yacoub MH, Stevens LM, Sarathchandra P, Taylor PM, et al. Endothelium-dependent regulation of the mechanical properties of aortic valve cusps. J Am Coll Cardiol. 2009;53(16):1448–55.PubMedCrossRefGoogle Scholar
  101. 101.
    Rajamannan NM, Subramaniam M, Stock SR, Stone NJ, Springett M, Ignatiev KI, et al. Atorvastatin inhibits calcification and enhances nitric oxide synthase production in the hypercholesterolaemic aortic valve. Heart. 2005;91(6):806–10.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Richards J, El-Hamamsy I, Chen S, Sarang Z, Sarathchandra P, Yacoub MH, et al. Side-specific endothelial-dependent regulation of aortic valve calcification: interplay of hemodynamics and nitric oxide signaling. Am J Pathol. 2013;182(5):1922–31.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Sun L, Sucosky P. Bone morphogenetic protein-4 and transforming growth factor-beta1 mechanisms in acute valvular response to supra-physiologic hemodynamic stresses. World J Cardiol. 2015;7(6):331–43.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Weinberg EJ, Schoen FJ, Mofrad MR. A computational model of aging and calcification in the aortic heart valve. PLoS One. 2009;4(6):e5960.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Chandra S, Rajamannan NM, Sucosky P. Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech Model Mechanobiol. 2012;11(7):1085–96.PubMedCrossRefGoogle Scholar
  106. 106.
    Sun L, Rajamannan NM, Sucosky P. Defining the role of fluid shear stress in the expression of early signaling markers for calcific aortic valve disease. PLoS One. 2013;8(12):e84433.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Aikawa E, Nahrendorf M, Sosnovik D, Lok VM, Jaffer FA, Aikawa M, et al. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation. 2007;115(3):377–86.PubMedCrossRefGoogle Scholar
  108. 108.
    Helske S, Syvaranta S, Lindstedt KA, Lappalainen J, Oorni K, Mayranpaa MI, et al. Increased expression of elastolytic cathepsins S, K, and V and their inhibitor cystatin C in stenotic aortic valves. Arterioscler Thromb Vasc Biol. 2006;26(8):1791–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Xing Y, Warnock JN, He Z, Hilbert SL, Yoganathan AP. Cyclic pressure affects the biological properties of porcine aortic valve leaflets in a magnitude and frequency dependent manner. Ann Biomed Eng. 2004;32(11):1461–70.PubMedCrossRefGoogle Scholar
  110. 110.
    Jian B, Narula N, Li QY, Mohler ER 3rd, Levy RJ. Progression of aortic valve stenosis: TGF-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann Thorac Surg. 2003;75(2):457–65; discussion 65–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Mahler GJ, Frendl CM, Cao Q, Butcher JT. Effects of shear stress pattern and magnitude on mesenchymal transformation and invasion of aortic valve endothelial cells. Biotechnol Bioeng. 2014;111(11):2326–37.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Markwald RR, Fitzharris TP, Manasek FJ. Structural development of endocardial cushions. Am J Anat. 1977;148(1):85–119.PubMedCrossRefGoogle Scholar
  113. 113.
    Markwald RR, Fitzharris TP, Smith WN. Structural analysis of endocardial cytodifferentiation. Dev Biol. 1975;42(1):160–80.PubMedCrossRefGoogle Scholar
  114. 114.
    Nakajima Y, Mironov V, Yamagishi T, Nakamura H, Markwald RR. Expression of smooth muscle alpha-actin in mesenchymal cells during formation of avian endocardial cushion tissue: a role for transforming growth factor beta3. Dev Dyn. 1997;209(3):296–309.PubMedCrossRefGoogle Scholar
  115. 115.
    Cote N, Mahmut A, Fournier D, Boulanger MC, Couture C, Despres JP, et al. Angiotensin receptor blockers are associated with reduced fibrosis and interleukin-6 expression in calcific aortic valve disease. Pathobiology. 2014;81(1):15–24.PubMedCrossRefGoogle Scholar
  116. 116.
    Kaden JJ, Dempfle CE, Grobholz R, Fischer CS, Vocke DC, Kilic R, et al. Inflammatory regulation of extracellular matrix remodeling in calcific aortic valve stenosis. Cardiovasc Pathol. 2005;14(2):80–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Kaden JJ, Kilic R, Sarikoc A, Hagl S, Lang S, Hoffmann U, et al. Tumor necrosis factor alpha promotes an osteoblast-like phenotype in human aortic valve myofibroblasts: a potential regulatory mechanism of valvular calcification. Int J Mol Med. 2005;16(5):869–72.PubMedGoogle Scholar
  118. 118.
    Mahler GJ, Farrar EJ, Butcher JT. Inflammatory cytokines promote mesenchymal transformation in embryonic and adult valve endothelial cells. Arterioscler Thromb Vasc Biol. 2013;33(1):121–30.PubMedCrossRefGoogle Scholar
  119. 119.
    Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466(7308):835–40.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    van Rooij E, Marshall WS, Olson EN. Toward microRNA-based therapeutics for heart disease—the sense in antisense. Circ Res. 2008;103(9):919–28.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Nigam V, Sievers HH, Jensen BC, Sier HA, Simpson PC, Srivastava D, et al. Altered microRNAs in bicuspid aortic valve: a comparison between stenotic and insufficient valves. J Heart Valve Dis. 2010;19(4):459–65.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Holliday CJ, Ankeny RF, Jo H, Nerem RM. Discovery of shear- and side-specific mRNAs and miRNAs in human aortic valvular endothelial cells. Am J Physiol Heart Circ Physiol. 2011;301(3):H856–67.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Thubrikar MJ, Aouad J, Nolan SP. Patterns of calcific deposits in operatively excised stenotic or purely regurgitant aortic valves and their relation to mechanical stress. Am J Cardiol. 1986;58(3):304–8.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Freeman RV, Otto CM. Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation. 2005;111(24):3316–26.PubMedCrossRefGoogle Scholar
  125. 125.
    Robicsek F, Thubrikar MJ, Fokin AA. Cause of degenerative disease of the trileaflet aortic valve: review of subject and presentation of a new theory. Ann Thorac Surg. 2002;73(4):1346–54.PubMedCrossRefGoogle Scholar
  126. 126.
    Olsson M, Thyberg J, Nilsson J. Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves. Arterioscler Thromb Vasc Biol. 1999;19(5):1218–22.PubMedCrossRefGoogle Scholar
  127. 127.
    O’Brien KD, Reichenbach DD, Marcovina SM, Kuusisto J, Alpers CE, Otto CM. Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of ‘degenerative’ valvular aortic stenosis. Arterioscler Thromb Vasc Biol. 1996;16(4):523–32.PubMedCrossRefGoogle Scholar
  128. 128.
    Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan J, Springett M, et al. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation. 2003;107(17):2181–4.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Rajamannan NM, Subramaniam M, Springett M, Sebo TC, Niekrasz M, McConnell JP, et al. Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation. 2002;105(22):2660–5.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Balachandran K, Sucosky P, Jo H, Yoganathan AP. Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am J Physiol Heart Circ Physiol. 2009;296(3):H756–64.PubMedCrossRefGoogle Scholar
  131. 131.
    Fujiwara K. Platelet endothelial cell adhesion molecule-1 and mechanotransduction in vascular endothelial cells. J Intern Med. 2006;259(4):373–80.PubMedCrossRefGoogle Scholar
  132. 132.
    Metzler SA. The aortic valve endothelial cell: a multi-scale study of strain mechanobiology. Mississippi State: Mississippi State University; 2010.Google Scholar
  133. 133.
    Nakada MT, Amin K, Christofidou-Solomidou M, O'Brien CD, Sun J, Gurubhagavatula I, et al. Antibodies against the first Ig-like domain of human platelet endothelial cell adhesion molecule-1 (PECAM-1) that inhibit PECAM-1-dependent homophilic adhesion block in vivo neutrophil recruitment. J Immunol. 2000;164(1):452–62.PubMedCrossRefGoogle Scholar
  134. 134.
    Vaporciyan AA, DeLisser HM, Yan HC, Mendiguren II, Thom SR, Jones ML, et al. Involvement of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science. 1993;262(5139):1580–2.PubMedCrossRefGoogle Scholar
  135. 135.
    Dusserre N, L’Heureux N, Bell KS, Stevens HY, Yeh J, Otte LA, et al. PECAM-1 interacts with nitric oxide synthase in human endothelial cells: implication for flow-induced nitric oxide synthase activation. Arterioscler Thromb Vasc Biol. 2004;24(10):1796–802.PubMedCrossRefGoogle Scholar
  136. 136.
    Heistad DD, Wakisaka Y, Miller J, Chu Y, Pena-Silva R. Novel aspects of oxidative stress in cardiovascular diseases. Circ J. 2009;73(2):201–7.PubMedCrossRefGoogle Scholar
  137. 137.
    Miller JD, Chu Y, Brooks RM, Richenbacher WE, Pena-Silva R, Heistad DD. Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J Am Coll Cardiol. 2008;52(10):843–50.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    El-Hamamsy I, Chester AH, Yacoub M. Cellular regulation of the structure and function of aortic valves. J Adv Res. 2010;1(1):5–12.CrossRefGoogle Scholar
  139. 139.
    Chiswell BP, Zhang R, Murphy JW, Boggon TJ, Calderwood DA. The structural basis of integrin-linked kinase-PINCH interactions. Proc Natl Acad Sci U S A. 2008;105(52):20677–82.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Lal H, Verma SK, Foster DM, Golden HB, Reneau JC, Watson LE, et al. Integrins and proximal signaling mechanisms in cardiovascular disease. Front Biosci. 2009;14:2307–34.CrossRefGoogle Scholar
  141. 141.
    Legate KR, Montanez E, Kudlacek O, Fassler R. ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol. 2006;7(1):20–31.PubMedCrossRefGoogle Scholar
  142. 142.
    Herranz B, Marquez S, Guijarro B, Aracil E, Aicart-Ramos C, Rodriguez-Crespo I, et al. Integrin-linked kinase regulates vasomotor function by preventing endothelial nitric oxide synthase uncoupling: role in atherosclerosis. Circ Res. 2012;110(3):439–49.PubMedCrossRefGoogle Scholar
  143. 143.
    Critchley DR. Genetic, biochemical and structural approaches to talin function. Biochem Soc Trans. 2005;33.(Pt 6:1308–12.PubMedCrossRefGoogle Scholar
  144. 144.
    Vestweber D. VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol. 2008;28(2):223–32.PubMedCrossRefGoogle Scholar
  145. 145.
    Ross R. Atherosclerosis is an inflammatory disease. Am Heart J. 1999;138(5 Pt 2):S419–20.PubMedCrossRefGoogle Scholar
  146. 146.
    Balachandran K, Sucosky P, Jo H, Yoganathan AP. Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am J Pathol. 2010;177(1):49–57.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Rosenhek R, Binder T, Porenta G, Lang I, Christ G, Schemper M, et al. Predictors of outcome in severe, asymptomatic aortic stenosis. N Engl J Med. 2000;343(9):611–7.PubMedCrossRefGoogle Scholar
  148. 148.
    Bach DS. Prevalence and characteristics of unoperated patients with severe aortic stenosis. J Heart Valve Dis. 2011;20(3):284–91.PubMedGoogle Scholar
  149. 149.
    Teo KK, Corsi DJ, Tam JW, Dumesnil JG, Chan KL. Lipid lowering on progression of mild to moderate aortic stenosis: meta-analysis of the randomized placebo-controlled clinical trials on 2344 patients. Can J Cardiol. 2011;27(6):800–8.PubMedCrossRefGoogle Scholar
  150. 150.
    Rosenhek R, Rader F, Loho N, Gabriel H, Heger M, Klaar U, et al. Statins but not angiotensin-converting enzyme inhibitors delay progression of aortic stenosis. Circulation. 2004;110(10):1291–5.PubMedCrossRefGoogle Scholar
  151. 151.
    O’Brien KD, Zhao XQ, Shavelle DM, Caulfield MT, Letterer RA, Kapadia SR, et al. Hemodynamic effects of the angiotensin-converting enzyme inhibitor, ramipril, in patients with mild to moderate aortic stenosis and preserved left ventricular function. J Investig Med. 2004;52(3):185–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Chemical, Materials and Biomedical EngineeringUniversity of GeorgiaAthensUSA

Personalised recommendations