Fluid–Structure Interaction Analysis of Bioprosthetic Heart Valves: the Application of a Computationally-Efficient Tissue Constitutive Model

  • Rana Zakerzadeh
  • Michael C. H. Wu
  • Will Zhang
  • Ming-Chen Hsu
  • Michael S. SacksEmail author


This paper builds on a recently developed computationally tractable material model merged with an immersogeometric fluid–structure interaction methodology for bioprosthetic heart valve modeling and simulation. Our main objective is to enable improved application of the use of exogenous crosslinked tissues in prosthesis design through computational methods by utilizing physically realistic constitutive models. To enhance constitutive modeling, valve leaflets are modeled with a computationally efficient phenomenological constitutive relation stemmed from a full structural model to explore the influence of incorporating a high-fidelity material model for the leaflets. We call this phenomenological version as the effective model. This effective model constitutive form is incorporated in the context of the isogeometric analysis to develop an efficient fluid–structure interaction method for thin shell structure of the leaflet tissues. The implementation is supported by representative simulations showing the applicability and usefulness of our effective material model in heart valve simulation framework.


Constitutive model Fluid–structure interaction Immersogeometric analysis Isogeometric analysis Heart valve 



This work was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under award number R01HL129077. The author Rana Zakerzadeh is partially supported by ICES Postdoctoral Fellowship. We thank the Texas Advanced Computing Center (TACC) at the University of Texas at Austin for providing HPC resources that have contributed to the research results reported in this paper.


  1. 1.
    Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng. 2007;197:173–201.CrossRefGoogle Scholar
  2. 2.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y. Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech. 2008;43:3–37.CrossRefGoogle Scholar
  3. 3.
    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J. Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol. 2010;9:481–98.CrossRefGoogle Scholar
  4. 4.
    Donea J, Giuliani S, Halleux JP. An arbitrary Lagrangian-Eulerian finite element method for transient dynamics fluid–structure interactions. Comput Methods Appl Mech Eng. 1982;33:689–723.CrossRefGoogle Scholar
  5. 5.
    Fung Y-C. Biomechanics. New York: Springer; 1993.CrossRefGoogle Scholar
  6. 6.
    Gilmanov A, Stolarski H, Sotiropoulos F. Non-linear rotation-free shell finite-element models for aortic heart valves. J Biomech. 2017;50:56–62.CrossRefGoogle Scholar
  7. 7.
    Holzapfel GA, Gasser TC. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast. 2000;61:1–48.CrossRefGoogle Scholar
  8. 8.
    Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR. Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech. 2014;54:1055–71.CrossRefGoogle Scholar
  9. 9.
    Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech. 2015;55:1211–25.CrossRefGoogle Scholar
  10. 10.
    Kamensky D, Evans JA, Hsu M-C. Stability and conservation properties of collocated constraints in immersogeometric fluid-thin structure interaction analysis. Commun Comput Phys. 2015;18:1147–80.CrossRefGoogle Scholar
  11. 11.
    Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR. An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng. 2015;284:1005–53.CrossRefGoogle Scholar
  12. 12.
    Kiendl J. Isogeometric analysis and shape optimal design of shell structures. PhD thesis, Lehrstuhl für Statik, Technische Universität München; 2011.Google Scholar
  13. 13.
    Kiendl J, Bletzinger K-U, Linhard J, Wüchner R. Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng. 2009;198:3902–14.CrossRefGoogle Scholar
  14. 14.
    Kiendl J, Bazilevs Y, Hsu MC, Wüchner R, Bletzinger K-U. The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng. 2010;199:2403–16.CrossRefGoogle Scholar
  15. 15.
    Kiendl J, Hsu M-C, Wu MCH, Reali A. Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput Methods Appl Mech Eng. 2015;291:280–303.CrossRefGoogle Scholar
  16. 16.
    Kim H, Lu J, Sacks MS, Chandran KB. Dynamic simulation pericardial bioprosthetic heart valve function. J Biomech Eng. 2006;128(5):717–24.CrossRefGoogle Scholar
  17. 17.
    May-Newman K, Yin FCP. A constitutive law for mitral valve tissue. J Biomech Eng. 1998;120(1):38.CrossRefGoogle Scholar
  18. 18.
    Mirnajafi A, Raymer J, Scott MJ, Sacks MS. The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials. Biomaterials 2005;26(7):795–804.CrossRefGoogle Scholar
  19. 19.
    Rivlin RS, Saunders DW. Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Philos Trans R Soc A Math Phys Eng Sci. 1951;243(865):251–88.CrossRefGoogle Scholar
  20. 20.
    Sacks MS, Sun W. Multiaxial mechanical behavior of biological materials. Annu Rev Biomed Eng. 2003;5(1):251–84.CrossRefGoogle Scholar
  21. 21.
    Sacks MS, Zhang W, Wognum S. A novel fibre-ensemble level constitutive model for exogenous cross-linked collagenous tissues. Interface Focus. 2015;6(1):20150090.CrossRefGoogle Scholar
  22. 22.
    Scott MA, Borden MJ, Verhoosel CV, Sederberg TW, Hughes TJR. Isogeometric finite element data structures based on Bézier extraction of T-splines. Int J Numer Methods Eng. 2011;88:126–56.CrossRefGoogle Scholar
  23. 23.
    Sun W, Sacks MS. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech Model Mechanobiol. 2005;4:190–9.CrossRefGoogle Scholar
  24. 24.
    Tezduyar TE, Sathe S, Stein K. Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng. 2006;195:5743–53.CrossRefGoogle Scholar
  25. 25.
    Vesely I, Boughner D. Analysis of the bending behaviour of porcine xenograft leaflets and of natural aortic valve material: bending stiffness, neutral axis and shear measurements. J Biomech. 1989;22(6–7):655–71.CrossRefGoogle Scholar
  26. 26.
    Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng. 2006;195:3776–96.CrossRefGoogle Scholar
  27. 27.
    Wu MCH, Zakerzadeh R, Kamensky D, Kiendl J, Sacks MS, Hsu M-C. An anisotropic constitutive model for immersogeometric fluidstructure interaction analysis of bioprosthetic heart valves. J Biomech. 2018;74:23–31.CrossRefGoogle Scholar
  28. 28.
    Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJR, Sacks MS, Hsu M-C. A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid–structure interaction analysis. Int J Numer Methods Biomed Eng. 2018;34(4):e2938. Scholar
  29. 29.
    Zakerzadeh R, Hsu M-C, Sacks MS. Computational methods for the aortic heart valve and its replacements. Expert Rev Med Devices. 2017;14(11):849–66.CrossRefGoogle Scholar
  30. 30.
    Zhang W, Sacks MS. Modeling the response of exogenously crosslinked tissue to cyclic loading: the effects of permanent set. J Mech Behav Biomed Mater. 2017;75:336–50.CrossRefGoogle Scholar
  31. 31.
    Zhang W, Zakerzadeh R, Zhang W, Sacks MS. A computationally efficient material model for the effective response of planar soft tissues. J Mech Behav Biomed Mater.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Rana Zakerzadeh
    • 1
  • Michael C. H. Wu
    • 2
  • Will Zhang
    • 1
  • Ming-Chen Hsu
    • 2
  • Michael S. Sacks
    • 3
    Email author
  1. 1.James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute and the Department of Biomedical EngineeringThe University of Texas at AustinAustinUSA
  2. 2.Department of Mechanical EngineeringIowa State UniversityAmesUSA
  3. 3.The Oden Institute and the Department of Biomedical EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations