Test 2

  • Michael Paddock
  • Amaka C. Offiah


The Risser classification is a system which grades skeletal maturity based upon the degree of fusion of the iliac crest apophyses and can be used as a surrogate marker for the skeletal maturity/ossification of the spinal vertebrae, which generally parallels that of the iliac crest. The higher the Risser grade, the greater the extent of skeletal maturity. As such, this can be used to predict the progression of scoliosis based on the amount of skeletal maturation that remains and can be used when planning corrective surgery. The Risser classification is comprised of the following stages:


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Image 1

  1. Aziz PAA, Luijkx T et al (2018) Risser criteria. Accessed July 2018
  2. Hacquebord JH, Leopold SS (2012) In brief: the Risser classification: a classic tool for the clinician treating adolescent idiopathic scoliosis. Clin Orthop Relat Res 470(8):2335–2338CrossRefGoogle Scholar

Image 4

  1. Dupuis CS, Westra SJ, Makris J et al (2009) Injuries and conditions of the extensor mechanism of the pediatric knee. Radiographics 29(3):877–886CrossRefGoogle Scholar
  2. Jones J, Gaillard F et al (2018) Patella sleeve fractures. Accessed April 2018
  3. Luiijkx T, Gaillard F et al (2018) Sinding-Larsen-Johansson disease. Accessed April 2018

Image 5

  1. el-Khoury GY, Boles CA (1997) Slipped capital femoral epiphysis. Radiographics 17(4):809–823CrossRefGoogle Scholar
  2. Thurston M, Gaillard F et al (2018) Slipped upper femoral epiphysis. Accessed April 2018

Image 13

  1. Jones J et al (2018) Os trigonum. Accessed July 2018
  2. Thurston M, Niknejad MT et al (2018) Pseudotumour of the calcaneus. Accessed July 2018

Image 14

  1. Bulloch B, Schubert CJ, Brophy PD et al (2000) Cause and clinical characteristics of rib fractures in infants. Pediatrics 105:E48CrossRefGoogle Scholar
  2. Cadzow SP, Armstrong KL (2000) Rib fractures in infants: red alert! The clinical features, investigations and child protection outcomes. J Pediatr Child Health 36:322e6CrossRefGoogle Scholar

Imaging of Suspected Physical Abuse in Infants and Young Children

  1. Lonergan GJ, Baker AM, Morey MK et al (2003) From the archives of the AFIP. Child abuse: radiologic-pathologic correlation. Radiographics 23:811e45CrossRefGoogle Scholar
  2. Offiah A, van Rijn RR, Perez-Rosello JM, Kleinman PK (2009) Skeletal imaging of child abuse (non-accidental injury). Pediatr Radiol 39(5):461–470CrossRefGoogle Scholar
  3. Paddock M, Sprigg A, Offiah AC (2017a) Imaging and reporting considerations for suspected physical abuse (non-accidental injury) in infants and young children. Part 1: initial considerations and appendicular skeleton. Clin Radiol 72(3):179–188CrossRefGoogle Scholar
  4. Paddock M, Sprigg A, Offiah AC (2017b) Imaging and reporting considerations for suspected physical abuse (non-accidental injury) in infants and young children. Part 2: axial skeleton and differential diagnoses. Clin Radiol 72(3):189–201CrossRefGoogle Scholar
  5. Paddock M, Sprigg A, Halliday K, Offiah AC (2018) Re: a comprehensive toolkit for imaging children who may have been abused: new guidance from the Royal College of Radiologists and the Society and College of Radiographers. Clin Radiol 73(7):672–673CrossRefGoogle Scholar
  6. Royal College of Radiologists & Society of College of Radiographers (2017) The radiological investigation of suspected physical child abuse. Accessed September 2017

Image 16

  1. Bhalla S, Hazewinkel M, Smithuis R (2018) Mediastinum – masses. Accessed April 2018
  2. Di Mazio B et al (2018) Extramedullary haematopoiesis. Accessed April 2018
  3. Hacking C, Gaillard F et al (2018) Anterior mediastinal germ cell tumours. Accessed April 2018
  4. Hacking C, Knipe H et al (2018) Thoracic plane. Accessed April 2018
  5. Jones J et al (2018) Bronchogenic cyst. Accessed April 2018
  6. Ranganath SH, Lee EY, Restrepo R, Eisenberg RL (2012) Mediastinal mass in children. AJR Am J Roentgenol 198(3):W197–W216CrossRefGoogle Scholar
  7. Skandhan AKP, St-Amant M et al (2018) Neurenteric cyst. Accessed April 2018
  8. Thurston M, Bekhit E et al (2018) Neuroblastoma. Accessed April 2018

Image 17

  1. Knipe H, Gaillard F et al (2018) Acetabular angle. Accessed July 2018
  2. Niknejad MT, Gaillard F et al (2018) Developmental dysplasia of the hip. Accessed July 2018
  3. Robben S, Smithuis R (2018) Developmental dysplasia of the hip – ultrasound. Accessed July 2018
  4. Storer SK, Skaggs DL (2006) Developmental dysplasia of the hip. Am Fam Physician 74(8):1310–1316PubMedGoogle Scholar
  5. Tamai J, McCarthy JJ (2018) Developmental dysplasia of the hip. Accessed July 2018

Image 19

  1. Gottsegen CJ, Eyer BA, White EA et al (2008) Avulsion fractures of the knee: imaging findings and clinical significance. Radiographics 28(6):1755–1770CrossRefGoogle Scholar
  2. Stevens MA, El-Khoury GY, Kathol MH et al (1999) Imaging features of avulsion injuries. Radiographics 19(3):655–672CrossRefGoogle Scholar

Image 24

  1. Eley KA, Johnson D, Sheerin F (2018) Cranial sutures & craniosynostosis. Accessed July 2018

Image 30

  1. Shah JN, Cohen HL, Choudhri AF et al (2017) Pediatric benign bone tumors: what does the radiologist need to know? Pediatr Imaging 37(3):1001–1002Google Scholar
  2. van der Woude HJ, Smithuis R (2018) Bone tumor – systematic approach and differential diagnosis. Accessed July 2018
  3. Yarmish G, Klein MJ, Landa J et al (2010) Imaging characteristics of primary osteosarcoma: nonconventional subtypes. Radiographics 30(6):1653–1672CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael Paddock
    • 1
  • Amaka C. Offiah
    • 2
  1. 1.Sheffield Teaching HospitalsSheffieldUK
  2. 2.Academic Unit of Child Health, Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK

Personalised recommendations