Advertisement

Computation of Optimal Trajectories for Delay Systems: An Optimize-Then-Discretize Strategy for General-Purpose NLP Solvers

  • Simone CacaceEmail author
  • Roberto Ferretti
  • Zahra Rafiei
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 29)

Abstract

We propose an “optimize-then-discretize” approach for the numerical solution of optimal control problems for systems with delays in both state and control. We first derive the optimality conditions and an explicit representation of the gradient of the cost functional. Then, we use explicit discretizations of the state/costate equations and employ general-purpose Non-Linear Programming (NLP) solvers, in particular Conjugate Gradient or Quasi-Newton schemes, to easily implement a descent method. Finally, we prove convergence of the algorithm to stationary points of the cost, and present some numerical simulations on model problems, including performance evaluation.

Keywords

Delay systems Optimality conditions Numerical approximation NLP solvers 

Notes

Acknowledgements

The authors would like to thank anonymous reviewers for helpful comments which improved the presentation.

References

  1. 1.
    Angell, T.S., Kirsch, A.: On the necessary conditions for optimal control of retarded systems. Appl. Math. Optim. 22, 117–145 (1990)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Banks, H.T.: Necessary conditions for control problems with variable time lags. SIAM J. Control 6, 9–47 (1968)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2013)zbMATHGoogle Scholar
  4. 4.
    Betts, J.T., Campbell, S.L., Thompson, K.C.: Solving optimal control problems with control delays using direct transcription. Appl. Numer. Math. 108, 185–203 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bonalli, R., Hérissé, B., Trélat, E.: Solving nonlinear optimal control problems with state and control delays by shooting methods combined with numerical continuation on the delays (2017). arXiv:1709:04383Google Scholar
  6. 6.
    Bryson, A.E., Denham, W.F.: Optimum programming problems with inequality constraints. II. Solutions by Steepest Descent. Am. Inst. Aeronaut. Astronaut. J. 2, 25–34 (1964)CrossRefGoogle Scholar
  7. 7.
    Bryson, A.E., Denham, W.F., Dreyfus, S.E.: Optimal programming problems with inequality constraints. I. Necessary Conditions for Extremal Solutions. Am. Inst. Aeronaut. Astronaut. J. 1, 2544–2550 (1963)CrossRefGoogle Scholar
  8. 8.
    Burger, M.: Optimal Control of Dynamical Systems: Calculating Input Data for Multibody System Simulation. Verlag Dr. Hut, München (2011)Google Scholar
  9. 9.
    Gerdts, M.: Optimal Control of ODEs and DAEs. De Gruyter, Berlin (2012)CrossRefGoogle Scholar
  10. 10.
    Göllmann, L., Maurer, H.: Theory and applications of optimal control problems with multiple time-delays. J. Ind. Manage. Optim. 10, 413–441 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Göllmann, L., Kern, D., Maurer, H.: Optimal control problems with delays in state and control variables subject to mixed control-state constraints. Optimal Control Appl. Methods 30, 341–365 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Guinn, T.: Reduction of delayed optimal control problems to nondelayed problems. J. Optim. Theory Appl. 18, 371–377 (1976)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Halanay, A.: Optimal controls for systems with time lag. SIAM J. Control 6, 215–234 (1968)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kelley, H.J.: Gradient theory of optimal flight paths. Am. Rocket Soc. J. 30, 947–954 (1960)zbMATHGoogle Scholar
  15. 15.
    Kelley, H.J.: Guidance theory and extremal fields. IRE Trans. Autom. Control 7, 75–82 (1962)CrossRefGoogle Scholar
  16. 16.
    Kharatishvili, G.L.: A maximum principle in extremal problems with delays. Math. Theory Control 26–34 (1967)Google Scholar
  17. 17.
    Tseng, M.-L., Chen, M.-S.: Chattering reduction of sliding mode control by low-pass filtering the control signal. Asian J. Control 12, 392–398 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Vinter, R.B.: State constrained optimal control problems with time delays. J. Math. Anal. Appl. 457, 1696–1712 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Matematica e FisicaUniversità Roma TreRomaItaly
  2. 2.Department of MathematicsYazd UniversityYazdIran

Personalised recommendations