Advertisement

Diffusion Process Representations for a Scalar-Field Schrödinger Equation Solution in Rotating Coordinates

  • William M. McEneaneyEmail author
  • Ruobing Zhao
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 29)

Abstract

A particular class of Schrödinger initial value problems is considered, wherein a particle moves in a scalar field centered at the origin, and more specifically, the distribution associated to the solution of the Schrödinger equation has negligible mass in the neighborhood of the origin. The Schrödinger equation is converted to the dequantized form, and a non-inertial frame centered along the trajectory of a classical particle is employed. A solution approximation as a series expansion in a small parameter is obtained through the use of complex-valued diffusion-process representations, where under a smoothness assumption, the expansion converges to the true solution. In the case of an expansion up through only the cubic terms in the space variable, there exist approximate solutions that are periodic with the period of a classical particle, but with an additional secular perturbation. The computations required for solution up to a finite order are purely analytical.

Keywords

Stochastic control Schrödinger equation Hamilton–Jacobi Stationary action Staticization Complex-valued diffusion 

Notes

Acknowledgements

Research partially supported by AFOSR Grant FA9550-15-1-0131 and NSF Grant DMS-1312569.

References

  1. 1.
    Azencott, R., Doss, H.: L’équation de Schrödinger quand ħ tend vers zéro: une approche probabiliste. Stoch. Aspects Classical Quant. Syst. Lect. Notes Math. 1109, 1–17 (1985)CrossRefGoogle Scholar
  2. 2.
    Doss, H.: Sur une resolution stochastique de l’equation de Schrödinger à coefficients analytiques. Commun. Math. Phys. 73, 247–264 (1980)CrossRefGoogle Scholar
  3. 3.
    Doss, H.: On a probabilistic approach to the Schrödinger equation with a time-dependent potential. J. Funct. Anal. 260, 1824–1835 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fleming, W.H.: Stochastic calculus of variations and mechanics. J. Optim. Theory Appl. 41, 55–74 (1983)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, New York (1982)CrossRefGoogle Scholar
  7. 7.
    Freidlin, M.I.: Functional Integration and Partial Differential Equations. Princeton University Press, Princeton (1985)zbMATHGoogle Scholar
  8. 8.
    Gikhman, I.I., Skorohod, A.V.: Introduction to the Theory of Random Processes. Saunders, Philadelphia (1969). (reprint, Dover, 1996)Google Scholar
  9. 9.
    Grabert, H., Hänggi, H., Talkner, P.: Is quantum mechanics equivalent to a classical stochastic process? Phys. Rev. A 19, 2440–2445 (1979)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kac, M.: On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65, 1–13 (1949)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1987)zbMATHGoogle Scholar
  12. 12.
    Kloeden, P.E., Platen, E., Schurz, H.: Numerical Solution of SDE Through Computer Experiments. Springer, Berlin (1994)CrossRefGoogle Scholar
  13. 13.
    Kolokoltsov, V.N.: Semiclassical Analysis for Diffusions and Stochastic Processes. Springer Lecture Notes in Mathematics, vol. 1724. Springer, Berlin (2000)Google Scholar
  14. 14.
    Krener, A.J.: Reciprocal diffusions in flat space. Prob. Theory Relat. Fields 107, 243–281 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Litvinov, G.L.: The Maslov dequantization, idempotent and tropical mathematics: a brief introduction. J. Math. Sci. 140, 426–444 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Maslov, V.P.: A new superposition principle for optimization problem. Russ. Math. Surv. [translation of Uspekhi Mat. Nauk] 42, 39–48 (1987)MathSciNetCrossRefGoogle Scholar
  17. 17.
    McEneaney, W.M.: A stationary-action control representation for the dequantized Schrödinger Equation. In: Proceedings of the 22nd International Symposium on Mathematical Theory of Networks and Systems (2016)Google Scholar
  18. 18.
    McEneaney, W.M.: A stochastic control verification theorem for the dequantized Schrödinger equation not requiring a duration restriction. Appl. Math. Optim. 1–26 (2017). https://doi.org/10.1007/s00245-017-9442-0
  19. 19.
    McEneaney, W.M., Dower, P.M.: Staticization, its dynamic program and solution propagation. Automatica 81, 56–67 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nagasawa, M.: Schrödinger Equations and Diffusion Theory. Birkhäuser, Basel (1993)CrossRefGoogle Scholar
  21. 21.
    Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966)CrossRefGoogle Scholar
  22. 22.
    Perret, C.: The Stability of Numerical Simulations of Complex Stochastic Differential Equations. ETH, Zurich (2010)Google Scholar
  23. 23.
    Range, R.M.: Holomorphic Functions and Integral Representations in Several Complex Variables. Springer, New York (1986)CrossRefGoogle Scholar
  24. 24.
    Takagi, S.: Quantum dynamics and non-inertial frames of reference. I. Generality. Prog. Theor. Phys. 85, 463–479 (1991)CrossRefGoogle Scholar
  25. 25.
    Uboe, J.: Complex valued multiparameter stochastic integrals. J. Theor. Prob. 8, 601–624 (1995)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zambrini, J.C.: Probability in quantum mechanics according to E. Schrödinger. Phys. B+C 151, 327–331 (1988)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of CaliforniaSan Diego, La JollaUSA

Personalised recommendations