Nondestructive Testing Technologies for Cultural Heritage: Overview

  • Giovanni LeucciEmail author


In this chapter, the most used NDT geophysical technologies applied in the field of preventive archaeology and in the analysis of monumental heritage will be considered. Starting from the current state of the art, we will examine: Ground-Penetrating Radar (GPR), electrical active (Electrical Resistivity Tomography—ERT; induced polarization—IP) and passive (Self-Potential—SP), and seismic sonic an ultrasonic methods. Here some important theoretical aspect will be explained as simply as possible, also using practical examples.


NDT state of the art GPR ERT IP SP Seismic sonic Seismic ultrasonic Background theory 


  1. Aitken MJ (1961) Physics and archaeology. Wiley, New YorkGoogle Scholar
  2. Alldred JC (1964) A fluxgate gradiometer for archaeological surveying. Archaeometry 7:14–19CrossRefGoogle Scholar
  3. Annan PA, Cosway WS, Redman JD (1991) Water table detection with ground penetrating radar. In: Society of Exploration Geophysicists annual meeting. Expanded abstracts, Houston, TX, USA, pp 494–496Google Scholar
  4. Atkinson RJC (1953) Field archaeology. Methuen, LondonGoogle Scholar
  5. Barone PM, Lauro SE, Mattei E, Pettinelli E (2010) Non-destructive technique to investigate an archaeological structure: a GPR survey in the Domus Aurea (Rome, Italy). In: IEEE proceedings of 13th international conference on ground penetrating radar, Lecce, 21–25 June, pp 250–254Google Scholar
  6. Batey RA (1987) Subsurface interface radar at Sepphoris, Israel. J Field Arch 14:1–8Google Scholar
  7. Bavusi M, Piscitelli S, Soldovieri F, Crocco L, Prisco G, Vallianatos F (2008) Exploitation of a microwave tomographic approach for GPR data processing collected at historical buildings of Chania (Crete, Greece). In: Lasaponara R, Masini H (eds) Advances in remote sensing for archaeology and cultural heritage management. Aracne, Rome, pp 151–154Google Scholar
  8. Becker H (1995) From nanotesla to picotesla—a new window for magnetic prospecting in archaeology. Archaeol Prospect 2:217–228Google Scholar
  9. Bevan BW, Kenyon J (1975) Ground-penetrating radar for historical Archaeology. MASCA Newslett 11:2–7Google Scholar
  10. Binda L, Saisia A, Tiraboschi C, Valle S, Colla C, Forde M (2003) Application of sonic and radar tests on the piers and walls of the Cathedral of Noto. Constr Build Mater 17:613–627CrossRefGoogle Scholar
  11. Binda L, Zanzi L, Lualdi M, Condoleo P (2004) The use of georadar to assess damage to a masonry bell tower in Cremona, Italy. NDT & E Int J 38:171–179CrossRefGoogle Scholar
  12. Burger HR (1997) Exploration geophysics of the shallow subsurface. Prentice–Hall, Englewood Cliffs, NJGoogle Scholar
  13. Calia A, Leucci G, Masini N, Matera L, Persico R, Sileo M (2012) Integrated prospecting in the Crypt of the Basilica of Saint Nicholas in Bari, Italy. J Geophys Eng 9:271–281. Scholar
  14. Campana S, Piro S (eds) (2008) Seeing the unseen geophysics and landscape archaeology. CRC PressGoogle Scholar
  15. Carrozzo MT, Leucci G, Negri S, Nuzzo L (2002) Applicazione di metodi elettrici, magnetici ed elettromagnetici per prospezioni archeologiche in area urbana: il caso di Muro Leccese (Lecce). Atti del 21° Convegno Nazionale GNGTS, Roma, 6–9 novembre 2002Google Scholar
  16. Carrozzo MT, Leucci G, Negri S, Nuzzo L (2003) GPR survey to understand the stratigraphy at the Roman ships archaeological site (Pisa, Italy). Archaeol Prospect 10(1):57–72CrossRefGoogle Scholar
  17. Cataldo R, Leucci G, Siviero S, Pagiotti R, Angelici P (2009) Analysis of deterioration in the crypt of the Abbey of Montecorona with integrated methods. J Geophys Eng 6:205–220. Scholar
  18. Cheeke D (2002) Fundamentals and applications of ultrasonic waves. CRC Press, pp 504Google Scholar
  19. Christensen NB, Sorensen KI (1994) Integrated use of electromagnetic methods for hydrogeological investigations. In: Proceedings of the symposium on the application of geophysics to engineering and environmental problems, Boston, Massachusetts, pp 163–176Google Scholar
  20. Clark AJ (1957) The transistor as the archaeologist’s latest tool. Illustrated London News 230:900–901Google Scholar
  21. Clark AJC (1990) Seeing beneath the soil. Batsford, LondonCrossRefGoogle Scholar
  22. Cleal RMJ, Walker KE, Montague R (1995) Stonehenge in its landscape: Twentieth century excavations. English Heritage, LondonGoogle Scholar
  23. Colani C (1966) A new type of locating device—I. The instruments. Archaeometry 9:3–8CrossRefGoogle Scholar
  24. Conyers LB, Goodman D (1997) Ground penetrating radar: an introduction for archaeologists. AltaMira Press, Walnut CreekGoogle Scholar
  25. Davis JL, Annan AP (1989) Ground-penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophys Prospect 37(5):531–551CrossRefGoogle Scholar
  26. de Groot SR, Mazur P (1983) Non-equilibrium thermodynamics. Dover Pubblications, New YorkGoogle Scholar
  27. De Domenico D, Giannino F, Leucci G, Bottari C (2006) Integrated geophysical surveys at the archaeological site of Tindari (Sicily, Italy). J Archaeol Sci 33:961–970CrossRefGoogle Scholar
  28. Delle Rose M, Leucci G (2010) Towards an integrated approach for characterisation of sinkhole hazards in urban environments: the unstable coast site of Casalabate, (Lecce, Italy). J Geophys Eng 7:143–154CrossRefGoogle Scholar
  29. Dey A, Morrison HF (1979) Resistivity modeling for arbitrarily shaped three-dimensional structures. Geophysics 44(4):753–780CrossRefGoogle Scholar
  30. Dobrin MB, Savit CH (1988) Introduction to geophysical prospecting. McGraw HillGoogle Scholar
  31. Fox RC, Hohmann GW, Killpack TJ, Rijo L (1980) Topographic effects in resistivity and induced-polarization surveys. Geophysics 45(1):75–93CrossRefGoogle Scholar
  32. Fruhwirth RK, Schmoller R (1996) Some aspects on the estimation of electromagnetic wave velocities. In: Proceedings 6th international conference on ground penetrating radar (GPR’96), Sendai, Japan, 30 Sept–3 Oct, pp 135–138Google Scholar
  33. Gaffney C (2008) Detecting trends in the prediction of the buried past: a review of geophysical techniques in archaeology. Archaeometry 50:313–336CrossRefGoogle Scholar
  34. Gerardi E, Leucci G, Masini N, Persico R (2014) On-site non invasive diagnostics and monitoring for the study, conservation and restoration of historical built heritage. In: Malfitana D (ed) A decade for centuries, pp 127–130Google Scholar
  35. Grasso F, Leucci G, Masini N, Persico R (2011) GPR prospecting in Renaissance and Baroque monuments in Lecce (Southern Italy). In: Proceeding 6th international workshop on advanced ground penetrating radar IWAGPR, Aachen, Germany, June, pp 22–4Google Scholar
  36. Hara T, Sakayama T (1984) The applicability of ground probing radar to site investigations, OYO technical note, 38 ppGoogle Scholar
  37. Hesse A (1981) Realisation et experimentation d’un resistivimetre autotracte enregistreur ‘RATE’ (en Collaboration avec A Jolivet). Compte rendu de fin d’etudes d’une recherche finance par la DGRST, d’ecision d’aide no. 78 7 0247 AC Les Sciences de la Terre et les problemes d’Amenagements d’Urbanisme et de Construction 14-3-1981Google Scholar
  38. Kadioglu S, Kadioglu YK (2010) Picturing internal fractures of historical statues using ground penetrating radar method. Adv Geosci 24:23–34CrossRefGoogle Scholar
  39. Keary P, Brooks M (1991) An introduction to geophysical exploration. Blackwell Scientific Publications, OxfordGoogle Scholar
  40. Lázaro-Mancilla O, Gómez-Treviño E (1996) Synthetic radargrams from electrical conductivity and magnetic permeability variations. J Appl Geophys 34:283–290CrossRefGoogle Scholar
  41. Leckebusch J (2003) Ground-penetrating radar: a modern three-dimensional prospection method. Archaeol Prospect 10:213–241CrossRefGoogle Scholar
  42. Leucci G (1999) Prospezioni elettromagnetica e di sismica a riflessione: studio dell’influenza dei parametri strumentali sul rapporto segnale/rumore. Tesi di laurea in Fisica, Università degli Studi di LecceGoogle Scholar
  43. Leucci G (2003) I metodi elettromagnetico impulsivo, elettrico e sismico tomografico a rifrazione per la risoluzione di problematiche ambientali: sviluppi metodologici e applicazioni. Tesi di Dottorato di Ricerca in Geofisica per l’Ambiente e il Territorio, Università degli Studi di MessinaGoogle Scholar
  44. Leucci G (2006) Contribution of ground-penetrating radar and electrical resistivity tomography to identify the cavity and fractures under the main church in Botrugno (Lecce, Italy). J Archaeol Sci 33(9):1194–1204. Scholar
  45. Leucci G (2007) Ground Penetrating Radar: un introduzione per gli archeology. Aracne Editrice, RomaGoogle Scholar
  46. Leucci G (2015) Geofisica Applicata all’Archeologia e ai Beni Monumentali. Palermo, Dario Flaccovio Editore, p 368Google Scholar
  47. Leucci G, De Giorgi L (2010) Microgravimetric and ground penetrating radar geophysical methods to map the shallow karstic cavities network in a coastal area (Marina di Capilungo, Lecce, Italy). Explor Geophys 41:178–188CrossRefGoogle Scholar
  48. Leucci G, De Giorgi L (2015) 2D and 3D seismic measurements to evaluate the collapse risk of cave in soft carbonate rock. Cent Eur J Geosci 7(1):84–94.
  49. Leucci G, De Giorgi L (2017) Il molino coratelli: indagini micro-geofisiche per la diagnostica strutturale. In I molini e l’industria molitoria in puglia. P 61–68Google Scholar
  50. Leucci G, Negri S (2006) Use of ground penetrating radar to subsurface archaeological features in an urban area. J Archaeol Sci 33:502–512. Scholar
  51. Leucci G, Quarta G (2016) The Cathedral of SS Annunziata in Castro (Lecce, southern Italy): Structural-Diagnostic surveys. Int J Innovative Sci Eng Technol 3(2):7–14Google Scholar
  52. Leucci G, Margiotta S, Negri S, Nuzzo L, Sansò P, Varola A (2003) Integrated geophysical, geological and geomorphological investigations for study the impact of agricultural activities on a complex karstic area. In: Proceedings del SAGEEP 2003 della Environmental and Engineering Geophysical Society, S Antonio, Texas, USA, 6–10 Apr 2003Google Scholar
  53. Leucci G, Margiotta S, Negri S (2004) Geological and geophysical investigations in karstic environment (Salice Salentino, Lecce, Italy). J Environ Eng Geophys (JEEG) 9:25–34CrossRefGoogle Scholar
  54. Leucci G, Greco F, De Giorgi L, Mauceri R (2007) 3D sesimic refraction tomography and electrical resistivity tomography survey in the Castle of Occhiolà (Sicily, Italy). J Archaeol Sci 34:233–242. Scholar
  55. Leucci G, Persico R, Quarta G (2010) GPR time lapse to quantify the subsidence degree in an urban area. In: Joint SIG workshop: urban-3D-radar-thermal remote sensing and developing countries, Ghent, Belgium, 22–24 Sept 2010Google Scholar
  56. Leucci G, Masini N, Persico R, Soldovieri F (2011) GPR and sonic tomography for structural restoration: the case of the Cathedral of Tricarico. J Geophys Eng 8:76–92. Scholar
  57. Leucci G, Masini N, Persico R, Quarta G, Dolce C (2012a) A multidisciplinary analysis of the Crypt of the Holy Spirit in Monopoli (Southern Italy). Near Surf Geophys 10:1–8. Scholar
  58. Leucci G, D’Agostino D, Cataldo R (2012b) 3D high resolution GPR survey yields insights into the history of the ancient town of Lecce (south of Italy). Archaeol Prospect 19(3):157–165. Scholar
  59. Leucci G, Masini N, Persico R (2012c) Time–frequency analysis of GPR data to investigate the damage of monumental buildings. J Geophys Eng 9:S81–S91. Scholar
  60. Leucci G, Parise M, Sammarco M, Scardozzi G (2016) The use of geophysical prospections to map ancient hydraulic works: the Triglio underground aqueduct (Apulia, southern Italy). Archaeol Prospect 23(3):195–211. Scholar
  61. Linford N (2006) The application of geophysical methods to archaeological prospection. Rep Prog Phys 69:2205–2257CrossRefGoogle Scholar
  62. Loke MH (1999) Time–lapse resistivity imaging inversion. In: Proceedings of the 5th meeting of the Environmental and Engineering Geophysical Society European Section, Em 1Google Scholar
  63. Loke MH (2001) Electrical imaging surveys for environmental and engineering studies. A practical guide to 2-D and 3-D surveys. RES2DINV Manual. IRIS Instruments.
  64. Masini N, Sileo M, Leucci G, Soldovieri F, D’Antonia A, De Giorgi L, Pecci A, Scavone M (2017) Integrated in situ investigations for the restoration: the case of regio VIII in Pompeii. In: Masini N, Soldovieri F (eds) Sensing the past: from artifact to historical site. Springer, pp 557–586.
  65. Neubauer W (2001) Magnetische Prospektion in der Archaologie. Verlag der Osterreichischen Akademie der Wissenschaften, WienGoogle Scholar
  66. Nuzzo L, Leucci G, Negri S (2009) GPR, ERT and magnetic investigations inside the Martyrium of St. Philip, Hierapolis, Turkey. Archaeol Prospect 16:1–16. Scholar
  67. Overbeek J (1956) The Donnan equilibrium. Prog Biophys Biophys Chem 6:57–84CrossRefGoogle Scholar
  68. Pettinelli E (1993) Il georadar: teoria ed applicazioni. Tesi di dottorato di ricerca in Geofisica Applicata Università degli Studi La Sapienza di Roma. 361Google Scholar
  69. Pieraccini M, Luzi G, Noferini L, Mecatti D, Atzeni C (2004) Joint time frequency analysis of layered masonry structures using penetrating radar. IEEE Trans Geosci Remote Sens 42:309–317CrossRefGoogle Scholar
  70. Pieraccini M, Noferini L, Mecatti D, Atzeni C, Persico R, Soldovieri F (2006) Advanced processing techniques for step-frequency continuous-wave penetrating radar: the case study of ‘Palazzo Vecchio’ walls (Firenze, Italy) Res. Nondestruct Eval 17:71–83CrossRefGoogle Scholar
  71. Ralph EK, Morrison F, O’Brien D (1968) Archaeological surveying utilizing a high-sensitivity difference. Magnetometer Geoexplor 6:109–122CrossRefGoogle Scholar
  72. Ranalli D, Scozzafava M, Tallini M (2004) Ground penetrating radar investigations for restoration of historical building: the case study of Collemaggio Basilicata (L’Aquila, Italy). J Cult Heritage 5:91–99CrossRefGoogle Scholar
  73. Revil A (2002) Self-potential signals associated with variations of the hydraulic head during an infiltration experiment. Geophys Res Letters 29:7Google Scholar
  74. Reynolds JM (2011) An introduction to applied and environmental geophysics. Wiley, ChichesterGoogle Scholar
  75. Roy A, Apparao A (1971) Depth of investigation in direct current methods. Geophysics 36:943–959CrossRefGoogle Scholar
  76. Roy K, Elliott M (1980) Resistivity and IP survey for delineating saline water and freshwater zones. Geoexploration 18:145–162CrossRefGoogle Scholar
  77. Sambuelli L, Calzoni C, Stocco S, Rege R (2010) Geophysical measurements on the occasion of the moving of an ancient Egyptian sculpture. In: Proceedings of GNGTS conference, Trieste, Italy, 16–19 Nov, pp 595–9Google Scholar
  78. Scollar I, Kruckeberg F (1966) Computer treatment of magnetic measurements from archaeological sites. Archaeometry 9:61–71CrossRefGoogle Scholar
  79. Scollar I, Tabbagh A, Hesse A, Herzog I (1990) Archaeological prospecting and remote sensing. Cambridge University Press, New YorkGoogle Scholar
  80. Sill WR (1983) Self‐potential modeling from primary flows. Geophysics 48(1):76–86CrossRefGoogle Scholar
  81. Stove GC, Addyman PV (1989) Ground probing impulse radar: an experiment in archaeological remote sensing at York. Antiquity 63:337–342CrossRefGoogle Scholar
  82. Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University PressGoogle Scholar
  83. Toraldo di Francia G (1988) Onde elettromagnetiche, Zanichelli Editore, p 705; Turner G (1994) Constant Q attenuation of subsurface radar. Geophysics 59:1192–1200Google Scholar
  84. Trotzig G (1993) The new European Convention on the protection of the archaeological heritage. Antiquity 67(255):414–415CrossRefGoogle Scholar
  85. Turner G, Siggins AF (1994) Constant Q attenuation of subsurface radar pulses. Geophysics 59:1192–1200CrossRefGoogle Scholar
  86. Utsi E (2010) The shrine of Edward the Confessor: a study in multi-frequency GPR investigation. In: Proceedings of 13th international conference on ground penetrating radar, Lecce, Italy, June, pp 21–5Google Scholar
  87. Vaughan CJ (1986) Ground-penetrating radar survey used in archaeological investigations. Geophysics 51:595–604CrossRefGoogle Scholar
  88. Von Hippel AR (1954) Dielectrics and waves. Wiley, pp 284Google Scholar
  89. Zanzi L (2004) Appunti di sismica di esplorazione e georadar, CUSL, pp 181. ISBN: 8881323508Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Archaeological and Monumental HeritageNational Research CouncilLecceItaly

Personalised recommendations