Advertisement

Polymer Optical Fiber Sensors Approaches for Insole Instrumentation

  • Arnaldo G. Leal-Junior
  • Antreas Theodosiou
  • Anselmo Frizera
  • Maria F. Domingues
  • Cátia Leitão
  • Kyriacos Kalli
  • Paulo André
  • Paulo Antunes
  • Maria José Pontes
  • Carlos Marques
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 22)

Abstract

Advantages like electromagnetic field immunity, fracture toughness, high strain limits, flexibility in bending and impact resistance of polymer optical fibers (POFs) are beneficial for applications that involve embedment in flexible structures. Since insoles are one of these flexible structures that may be used in different wearable applications, POFs can be applied and this paper proposes the application of POF sensors in insole instrumentation with two different approaches: intensity variation-based and polymer optical fiber Bragg gratings (POFBGs). Results show that both approaches present low errors with root mean squared errors (RMSEs) of 45.17 kPa for the plantar pressure monitoring with the POFBG-based insole and 5.30 N for the ground reaction force measurement with the intensity variation sensors. These results demonstrate the feasibility of POF sensors applications in flexible structures and in wearable applications such as insoles and soft robotics instrumentation.

References

  1. 1.
    Hadi, A., et al.: Foot plantar pressure measurement system: a review. Sensors 12(7), 9884–9912 (2012)CrossRefGoogle Scholar
  2. 2.
    Morag, E., Cavanagh, P.R.: Structural and functional predictors of regional peak pressures under the foot during walking. J. Biomech. 32(4), 359–370 (1999)CrossRefGoogle Scholar
  3. 3.
    Taborri, J., Palermo, E., Rossi, S., Cappa, P.: Gait partitioning methods: a systematic review. Sensors 16(1), 66 (2016)CrossRefGoogle Scholar
  4. 4.
    Abboud, R.J.: Relevant foot biomechanics. Current Orthop. 16(3), 165–179 (2002)CrossRefGoogle Scholar
  5. 5.
    Kirtley, C.: Clinical Gait Analysis: Theory and Practice. Elsevier, Philadelphia (2006)Google Scholar
  6. 6.
    Villa-Parra, A., et al.: Knee impedance modulation to control an active orthosis using insole sensors. sensors 17(12), 2751 (2017)CrossRefGoogle Scholar
  7. 7.
    Leal-Junior, A.G., et al.: Polymer optical fiber for in-shoe monitoring of ground reaction forces during the gait. IEEE Sens. J. 18(6), 1558–1748 (2018)Google Scholar
  8. 8.
    Peters, K.: Polymer optical fiber sensors—a review. Smart Mater. Struct. 20(1), 13002 (2011)CrossRefGoogle Scholar
  9. 9.
    Leal-Junior, A.G., Frizera, A., José Pontes, M.: Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors. Opt. Laser Technol. 100, 272–281 (2018)CrossRefGoogle Scholar
  10. 10.
    Vilarinho, D., et al.: POFBG-embedded cork insole for plantar pressure monitoring. Sensors 17(12), 2924 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Arnaldo G. Leal-Junior
    • 1
  • Antreas Theodosiou
    • 2
  • Anselmo Frizera
    • 1
  • Maria F. Domingues
    • 4
  • Cátia Leitão
    • 4
  • Kyriacos Kalli
    • 2
  • Paulo André
    • 3
  • Paulo Antunes
    • 4
  • Maria José Pontes
    • 1
  • Carlos Marques
    • 4
  1. 1.Graduate Program of Electrical Engineering of FederalUniversity of Espírito SantoVitóriaBrazil
  2. 2.Nanophotonics Research LaboratoryCyprus University of TechnologyLimassolCyprus
  3. 3.Instituto de Telecomunicações and Department of Electrical and Computer Engineering, Instituto Superior TécnicoUniversity of LisbonLisbonPortugal
  4. 4.Instituto de Telecomunicações and Physics Department and I3NCampus Universitário de SantiagoAveiroPortugal

Personalised recommendations