Overview and Challenges for Controlling Back-Support Exoskeletons

  • Maria LazzaroniEmail author
  • Stefano Toxiri
  • Darwin G. Caldwell
  • Elena De Momi
  • Jesús Ortiz
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 22)


Exoskeletons were recently proposed to reduce the risk of musculoskeletal disorders for workers. To promote adoption of active exoskeletons in the workplace, control interfaces and strategies have to be designed that overcome practical problems. Open challenges regard sensors invasiveness and complexity, accurate user’s motion detection, and adaptability in adjusting the assistance to address different tasks and users. Focusing on back-support exoskeletons, different control interfaces and strategies are discussed that aim at automatically driving and modulating the assistance, according to the activity the user is performing.


  1. 1.
    Punnett, L., Wegman, D.H.: Work-related musculoskeletal disorders: the epidemiologic evidence and the debate. J. Electromyogr. Kinesiol. 14(1), 13–23 (2004)CrossRefGoogle Scholar
  2. 2.
    de Looze, M.P., Bosch, T., Krause, F., Stadler, K.S., O’Sullivan, L.W.: Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics 59(5), 671–681 (2016)CrossRefGoogle Scholar
  3. 3.
    INAIL Open Data.
  4. 4.
    Reeves, N.P., Cholewicki, J.: Modeling the human lumbar spine for assessing spinal loads, stability, and risk of injury. Crit. Rev. Biomed. Eng. 31(1&2), 73–139 (2003)Google Scholar
  5. 5.
    Tucker, M.R., Olivier, J., Pagel, A., Bleuler, H., Bouri, M., Lambercy, O., del R Millán, J., Riener, R., Vallery, H.: Control strategies for active lower extremity prosthetics and orthotics: a review. J. Neuroeng. Rehabil. 12(1), 1 (2015)CrossRefGoogle Scholar
  6. 6.
    Kobayashi, H. Nozaki, H.: Development of support system for forward tilting of the upper body. In: 2008 IEEE International Conference on Mechatronics and Automation, ICMA 2008. pp. 352–356. IEEE (2008)Google Scholar
  7. 7.
    Hara, H., Sankai, Y.: Development of HAL for lumbar support. In: SCIS & ISIS/SCIS & ISIS 2010, pp. 416–421. Japan Society for Fuzzy Theory and Intelligent Informatics (2010)Google Scholar
  8. 8.
    Grazi, L., Crea, S., Parri, A., Yan, T., Cortese, M., Giovacchini, F., Cempini, M., Pasquini, G., Micera, S., Vitiello, N.: Gastrocnemius myoelectric control of a robotic hip exoskeleton. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3881–3884. IEEE (2015)Google Scholar
  9. 9.
  10. 10.
    Saccares, L., Brygo, A., Sarakoglou, I., Tsagarakis, N.G.: A novel human effort estimation method for knee assistive exoskeletons. In: 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 1266–1272. IEEE (2017)Google Scholar
  11. 11.
    Toxiri, S., Koopman, A.S., Lazzaroni, M., Ortiz, J., Power, V., de Looze, M.P., O’Sullivan, L., Caldwell, D.G.: Rationale, implementation and evaluation of assistive strategies for an active back-support exoskeleton. Frontiers in Robotics and AI (in press)Google Scholar
  12. 12.
    Chen, B., Grazi, L., Lanotte, F., Vitiello, N., Crea, S.: A real-time lift detection strategy for a hip exoskeleton. Front. Neurorobotics 12, 17 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maria Lazzaroni
    • 1
    • 2
    Email author
  • Stefano Toxiri
    • 1
  • Darwin G. Caldwell
    • 1
  • Elena De Momi
    • 2
  • Jesús Ortiz
    • 1
  1. 1.Department of Advanced RoboticsIstituto Italiano di TecnologiaGenovaItaly
  2. 2.Department of Electronics, Information and BioengineeringPolitecnico di MilanoMilanItaly

Personalised recommendations