Advertisement

Center of Mass and Postural Adaptations During Robotic Exoskeleton-Assisted Walking for Individuals with Spinal Cord Injury

  • Arvind Ramanujam
  • Kamyar Momeni
  • Syed R. Husain
  • Jonathan Augustine
  • Erica Garbarini
  • Peter Barrance
  • Ann M. Spungen
  • Pierre K. Asselin
  • Steven Knezevic
  • Gail F. Forrest
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 22)

Abstract

The goal of this study is to understand the postural adaptations characterized by the whole body center of mass (COM) for individuals with SCI while walking with powered robotic exoskeletons, EksoGTTM and ReWalkTM. COM excursions showed a greater medial-lateral weight shift approach while walking in the EksoGTTM compared to a more forward-lean approach in the ReWalk™, however, postural trunk lean was significantly (p < 0.05) higher in the ReWalkTM. Understanding the effects of exoskeleton designs on posture and sway is crucial towards developing effective and efficient training protocols for rehabilitation and recovery post SCI.

References

  1. 1.
    Anderson, K.D.: Targeting recovery: priorities of the spinal cord-injured population. J. Neurotrauma 21, 1371–1383 (2004)CrossRefGoogle Scholar
  2. 2.
    Ditunno, P.L., Patrick, M., Stineman, M., Ditunno, J.F.: Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord. 46(7), 500 (2008)CrossRefGoogle Scholar
  3. 3.
    Asselin, P., Knezevic, S., Kornfeld, S., Cirnigliaro, C., Agranova-Breyter, I., Bauman, W.A., et al.: Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J. Rehabil. Res. Dev. 52(2), 147–158 (2015)CrossRefGoogle Scholar
  4. 4.
    FDA: Evaluation Of Automatic Class III Designation (De Novo) For Argore Walk. 15 A.D. Ref Type: Internet CommunicationGoogle Scholar
  5. 5.
    FDA. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfrl/ldetails.cfm?lid=482440. FDA. 16 A.D. Ref Type: Internet Communication
  6. 6.
    HAL For Medical Use (Lower Limb Type) 510(k) Premarket Notification, Accessdata.fda.gov (2018). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K171909. Accessed 23 Jan 2018
  7. 7.
    Kaya, B.K., Krebs, D.E., Riley, P.O.: Dynamic stability in elders: momentum control in locomotor ADL. J. Gerontol. A Biol. Sci. Med. Sci. 53, M126–M134 (1998)CrossRefGoogle Scholar
  8. 8.
    Lee, H.J., Chou, L.S.: Detection of gait instability using the center of mass and center of pressure inclination angles. Arch. Phys. Med. Rehabil. 87(4), 569–575 (2006)CrossRefGoogle Scholar
  9. 9.
    Ramanujam, A., Cirnigliaro, C.M., Garbarini, E., Asselin, P., Pilkar, R., Forrest, G.F.: Neuromechanical adaptations during a robotic powered exoskeleton assisted walking session. J. Spinal Cord Med. 41(5), 518–528 (2017)CrossRefGoogle Scholar
  10. 10.
    Ramanujam, A., Spungen, A., Asselin, P., Garbarini, E., Augustine, J., Canton, S., Barrance, P., Forrest, G.F.: Training response to longitudinal powered exoskeleton training for SCI. In: Wearable Robotics: Challenges and Trends 2017, pp. 361–366. Springer (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Arvind Ramanujam
    • 1
  • Kamyar Momeni
    • 1
    • 2
  • Syed R. Husain
    • 1
  • Jonathan Augustine
    • 1
  • Erica Garbarini
    • 1
  • Peter Barrance
    • 1
    • 2
  • Ann M. Spungen
    • 3
  • Pierre K. Asselin
    • 3
  • Steven Knezevic
    • 3
  • Gail F. Forrest
    • 1
  1. 1.Kessler FoundationWest OrangeUSA
  2. 2.Rutgers, New Jersey Medical SchoolNewarkUSA
  3. 3.James J. Peters Veterans Affairs Medical CenterBronxUSA

Personalised recommendations