Design of a Hand Exoskeleton for Use with Upper Limb Exoskeletons

  • Peter Walker FergusonEmail author
  • Brando Dimapasoc
  • Yang Shen
  • Jacob Rosen
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 22)


Due to high degree of freedom and different mechanism foci, hand and arm exoskeletons are usually developed separately and seldom combined together. Hand exoskeletons are typically more complex mechanisms than arm or leg exoskeletons due to the numerous degrees of freedom encapsulated in the hand and the small anatomical structure involved. This study presents the design of a 12 DOF (6 active) reconfigurable hand exoskeleton for rehabilitation that will be installed on the upper limb exoskeletons, EXO-UL8 and BLUE SABINO. Given the mechanism architecture, a nonlinear optimization framework minimizes physical footprint while maximizing mechanism isotropy and device functionality.


  1. 1.
    Benjamin, E.J., et al.: Heart disease and stroke statistics–2017 update: a report from the American heart association. Circulation 135(10), e146 (2017)CrossRefGoogle Scholar
  2. 2.
    Wege, A., Zimmermann, A.: Electromyography sensor based control for a hand exoskeleton. In: 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1470–1475, December 2007Google Scholar
  3. 3.
    Ho, N.S.K., et al.: An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation. In: 2011 IEEE International Conference on Rehabilitation Robotics, pp. 1–5, June 2011Google Scholar
  4. 4.
    Schabowsky, C.N., Godfrey, S.B., Holley, R.J., Lum, P.S.: Development and pilot testing of hexorr: hand exoskeleton rehabilitation robot. J. NeuroEngineering Rehabil. 7(1), 36 (2010)CrossRefGoogle Scholar
  5. 5.
    Ren, Y., Park, H.S., Zhang, L.Q.: Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation. In: 2009 IEEE International Conference on Rehabilitation Robotics, pp. 761–765, June 2009Google Scholar
  6. 6.
    Frisoli, A., et al.: A new force-feedback arm exoskeleton for haptic interaction in virtual environments. In: First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference, pp. 195–201, March 2005Google Scholar
  7. 7.
    Lauretti, C., et al.: Learning by demonstration for motion planning of upper-limb exoskeletons. Front. Neurorobotics 12, 5 (2018)CrossRefGoogle Scholar
  8. 8.
    Shen, Y., Ma, J., Dobkin, B., Rosen, J.: Asymmetric dual arm approach for post stroke recovery of motor function utilizing the EXO-UL8 exoskeleton system: a pilot study. In: Engineering in Medicine and Biology Society (EMBC), June 2018Google Scholar
  9. 9.
    Perry, J.C., Maura, R., Bitikofer, C.K., Wolbrecht, E.T.: Blue sabino: development of a bilateral exoskeleton instrument for comprehensive upper-extremity neuromuscular assessment. In: 2018 International Conference on Neurorehabilitation (ICNR), October 2018, to be publishedGoogle Scholar
  10. 10.
    Kapandji, I., Honoré, L., Poilleux, F.: Upper Limb, ser. Physiology of the joints: annotated diagrams of the mechanics of the human joints/I.A. Kapandji. L.H. Honoré Übers. Churchill Livingstone (1982)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Peter Walker Ferguson
    • 1
    Email author
  • Brando Dimapasoc
    • 1
  • Yang Shen
    • 1
  • Jacob Rosen
    • 1
  1. 1.Bionics Lab at the University of California Los AngelesLos AngelesUSA

Personalised recommendations