Advertisement

Bio-inspired Walking: From Humanoids to Assistive Devices

  • Renaud Ronsse
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 22)

Abstract

In this document, a general framework for generating bio-inspired walking is outlined. This framework relies on the combination of a musculoskeletal model of the leg and different bio-inspired neural principles for providing activation signals to these virtual muscles. We explored this framework both for humanoid walking – achieving both versatile and human-like gaits – and for human walking assistance.

References

  1. 1.
    Krotkov, E., Hackett, D., Jackel, L., Perschbacher, M., Pippine, J., Strauss, J., Pratt, G., Orlowski, C.: The DARPA robotics challenge finals: results and perspectives. J. Field Robot. 34(2), 229–240 (2017)CrossRefGoogle Scholar
  2. 2.
    Ijspeert, A.J.: Biorobotics: using robots to emulate and investigate agile locomotion. Science 346(6206), 196–203 (2014). http://dx.doi.org/10.1126/science.1254486CrossRefGoogle Scholar
  3. 3.
    Lee, H., Rouse, E.J., Krebs, H.I.: Summary of human ankle mechanical impedance during walking. IEEE J. Transl. Eng. Health Med. 4, 1–7 (2016)CrossRefGoogle Scholar
  4. 4.
    Eilenberg, M., Geyer, H., Herr, H.: Control of a powered ankle-foot prosthesis based on a neuromuscular model. IEEE Trans. Neural Syst. Rehabil. Eng. 18(2), 164–173 (2010)CrossRefGoogle Scholar
  5. 5.
    Van der Noot, N., Ijspeert, A.J., Ronsse, R.: Bio-inspired controller achieving forward speed modulation with a 3D bipedal walker. Int. J. Robot. Res. 37(1), 168–196 (2018)CrossRefGoogle Scholar
  6. 6.
    Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. London B Biol. Sci. 126(843), 136–195 (1938)CrossRefGoogle Scholar
  7. 7.
    Tsagarakis, N.G., Morfey, S., Cerda, G.M., Zhibin, L., Caldwell, D.G.: COMpliant huMANoid COMAN: optimal joint stiffness tuning for modal frequency control. In: 2013 IEEE International Conference on Robotics and Automation, pp. 673–678. IEEE, May 2013Google Scholar
  8. 8.
    Geyer, H., Herr, H.: A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 263–273 (2010)CrossRefGoogle Scholar
  9. 9.
    Song, S., Geyer, H.: A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. J. Physiol. 593(16), 3493–3511 (2015)CrossRefGoogle Scholar
  10. 10.
    Minassian, K., Hofstoetter, U.S., Dzeladini, F., Guertin, P.A., Ijspeert, A.: The human central pattern generator for locomotion: does it exist and contribute to walking? Neuroscientist 23(6), 649–663 (2017)CrossRefGoogle Scholar
  11. 11.
    Garate, V.R., Parri, A., Yan, T., Munih, M., Lova, R.M., Vitiello, N., Ronsse, R.: Walking assistance using artificial primitives: a novel bioinspired framework using motor primitives for locomotion assistance through a wearable cooperative exoskeleton. IEEE Robot. Autom. Mag. 23(1), 83–95 (2016). http://dx.doi.org/10.1109/MRA.2015.2510778
  12. 12.
    Giszter, S.F.: Motor primitives-new data and future questions. Curr. Opin. Neurobiol. 33, 156–165 (2015). http://dx.doi.org/10.1016/j.conb.2015.04.004CrossRefGoogle Scholar
  13. 13.
    Cappellini, G., Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F.: Motor patterns in human walking and running. J. Neurophysiol. 95(6), 3426–3437 (2006). http://dx.doi.org/10.1152/jn.00081.2006CrossRefGoogle Scholar
  14. 14.
    Garate, V.R., Parri, A., Yan, T., Munih, M., Lova, R.M., Vitiello, N., Ronsse, R.: Experimental validation of motor primitive-based control for leg exoskeletons during continuous multi-locomotion tasks. Front. Neurorobot. 11, 15 (2017)Google Scholar
  15. 15.
    Ambrozic, L., Gorsic, M., Geeroms, J., Flynn, L., Molino Lova, R., Kamnik, R., Munih, M., Vitiello, N.: CYBERLEGs: a user-oriented robotic transfemoral prosthesis with whole-body awareness control. IEEE Robot. Autom. Mag. 21(4), 82–93 (2014)CrossRefGoogle Scholar
  16. 16.
    Giovacchini, F., Vannetti, F., Fantozzi, M., Cempini, M., Cortese, M., Parri, A., Yan, T., Lefeber, D., Vitiello, N.: A light-weight active orthosis for hip movement assistance. Robot. Autonom. Syst. 73, 123–134 (2015)CrossRefGoogle Scholar
  17. 17.
    Yan, T., Parri, A., Fantozzi, M., Cortese, M., Muscolo, M., Cempini, M., Giovacchini, F., Pasquini, G., Munih, M., Vitiello, N.: A novel adaptive oscillators-based control for a powered multi-joint lower-limb orthosis. In: Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR) (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Mechanics, Materials, and Civil Engineering, The Institute of Neuroscience, and Louvain BionicsUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations