Trunk Range of Motion in the Sagittal Plane with and Without a Flexible Back Support Exoskeleton

  • Matthias B. NäfEmail author
  • Axel S. Koopman
  • Carlos Rodriguez-Guerrero
  • Bram Vanderborght
  • Dirk Lefeber
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 22)


A large portion of the working population is affected by back and shoulder pain. Lower back support exoskeletons were introduced as a preventative measure, but they are not widely adopted by the industry yet. Their adoption is hindered chiefly by discomfort, loss of range of motion and kinematic incompatibility. In this work, we discuss the range of motion of the trunk in the sagittal plane, once wearing a flexible exoskeleton and once without wearing an exoskeleton (N = 2).


  1. 1.
    Eurofound: Fifth European Working Conditions Survey. Publications Office of the European Union (2012)Google Scholar
  2. 2.
    Waters, T.R., Putz-Anderson, V., Garg, A., Fine, L.J.: Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 36, 749–776 (1993)CrossRefGoogle Scholar
  3. 3.
    de Looze, M.P., Bosch, T., Krause, F., Stadler, K.S., O’Sullivan, L.W.: Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics 59, 671–681 (2015)CrossRefGoogle Scholar
  4. 4.
    Näf, M.B., Koopman, A.S., Baltrusch, S., Rodriguez-Guerrero, C., Vanderborght, B., Lefeber, D.: Passive back support exoskeleton improves range of motion using flexible beams. Front. Robot. AI 5, 72 (2018)CrossRefGoogle Scholar
  5. 5.
    Muramatsu, Y., Umehara, H., Kobayashi, H.: Improvement and quantitative performance estimation of the back support muscle suit. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2013)Google Scholar
  6. 6.
    Magee, D.J.: Orthopedic Physical Assessment. Elsevier Health Sciences, San Francisco (2006)Google Scholar
  7. 7.
    Millard, M., Sreenivasa, M., Mombaur, K.: Predicting the motions and forces of wearable robotic systems using optimal control. Front. Robot. AI 4, 41 (2017)CrossRefGoogle Scholar
  8. 8.
    Kingma, I., Baten, C.T.M., Dolan, P., Toussaint, H.M., Van Dieën, J.H., De Looze, M.P., Adams, M.A.: Lumbar loading during lifting: a comparative study of three measurement techniques. J. Electromyogr. Kinesiol. 11, 337–345 (2001)CrossRefGoogle Scholar
  9. 9.
    Abdoli-Eramaki, M., Stevenson, J.M., Reid, S.A., Bryant, T.J.: Mathematical and empirical proof of principle for an on-body personal lift augmentation device (PLAD). J. Biomech. 40, 1694–1700 (2007)CrossRefGoogle Scholar
  10. 10.
    Toxiri, S., Ortiz, J., Masood, J., Fernandez, J., Mateos, L.A., Caldwell, D.G.: A wearable device for reducing spinal loads during lifting tasks: biomechanics and design concepts. In: 2015 IEEE International Conference on Robotics and Biomimetics. IEEE-ROBIO 2015 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Matthias B. Näf
    • 1
    Email author
  • Axel S. Koopman
    • 2
  • Carlos Rodriguez-Guerrero
    • 1
  • Bram Vanderborght
    • 1
  • Dirk Lefeber
    • 1
  1. 1.Vrije Universiteit Brussel (VUB) and Flanders MakeBrusselBelgium
  2. 2.Vrije Universiteit Amsterdam (VUA)AmsterdamThe Netherlands

Personalised recommendations