Advertisement

Artificial Vision Algorithm for Object Manipulation with a Robotic Arm in a Semi-Autonomous Brain-Computer Interface

  • M. A. Ramírez-Moreno
  • S. M. Orozco-Soto
  • J. M. Ibarra-Zannatha
  • D. Gutiérrez
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 22)

Abstract

We propose an artificial vision algorithm for a semi-autonomous brain-computer interface (BCI). The interface was designed in such a way that users are able to manipulate a robotic arm to pick up an object from a table and place it in one of two possible locations indicated as goal disks, and the manipulation is performed without any concern about continuous control of the final effector. The implemented algorithm is used to obtain, in real time, the positions of the object and the disks in reference to the robot frame. The main techniques used in the proposed algorithm were color segmentation and homography transformation. The implementation of the algorithm allows to obtain the positions of all the items in the table, and it successfully performs pick and place tasks, setting the items on different positions across the table.

References

  1. 1.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)CrossRefGoogle Scholar
  2. 2.
    Cecotti, H.: A self-paced and calibration-less SSVEP-based brain-computer interface speller. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 127–133 (2010)CrossRefGoogle Scholar
  3. 3.
    Wang, C., Xia, B., Li, J., Yang, W., Xiao, D., Velez, A.C., Yang, H.: Motor imagery BCI-based robot arm system. In: Seventh International Conference on Natural Computation (2011)Google Scholar
  4. 4.
    Murphy, D.P., Bai, O., Gorgey, A.S., Fox, J., Lovegreen, W.T., Burkhardt, B.W., Atri, R., Marquez, J.S., Li, Q., Fei, D.-Y.: Electroencephalogram-based brain-computer interface and lower-limb prosthesis control: a case study. Front. Neurol. 8, 696 (2017)CrossRefGoogle Scholar
  5. 5.
    McFarland, D.J., Miner, L.A., Vaughan, T.M., Wolpaw, J.R.: Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 12, 177–186 (2000)CrossRefGoogle Scholar
  6. 6.
    Grainmann, B., Allison, B., Mandel, C., Lüth, T., Valbuena, D., Gräser, A.: Non-invasive brain-computer interfaces for semi-autonomous assistive devices. In: Robust Inteligent Systems, Chap. 6 (2008)Google Scholar
  7. 7.
    Royer, A.S., Rose, M.L., He, B.: Goal selection vs. process control while learning to use BCI. J. Neural Eng. 8, 1–20 (2012)Google Scholar
  8. 8.
    Göhring, D., Latotzky, D., Wang, M., Rojas, R.: Semi-autonomous car control using brain computer interfaces. Intell. Auton. Syst. 12, 393–408 (2013)CrossRefGoogle Scholar
  9. 9.
    Bell, C.J., Shenoy, P., Chalodhorn, R., Rao, R.P.N.: Control of a humanoid robot by a noninvasive brain-computer interface in humans. J. Neural Eng. 5, 214–220 (2008)CrossRefGoogle Scholar
  10. 10.
    Valbuena, D., Cyriacks, M., Friman, O., Volosyak, I., Gräser, A.: Brain-computer interface for high-level control of rehabilitation robotic systems. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007, pp. 619–625 (2007)Google Scholar
  11. 11.
    Ramírez Moreno, M.A., Gutiérrez, D.: Modeling a robotic arm with conformal geometric algebra in a brain-computer interface. In: Proceedings of the 2018 International Conference on Electronics, Communications and Computers, pp. 11–17 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. A. Ramírez-Moreno
    • 1
  • S. M. Orozco-Soto
    • 1
  • J. M. Ibarra-Zannatha
    • 1
  • D. Gutiérrez
    • 1
  1. 1.Center for Research and Advanced StudiesMexicoMexico

Personalised recommendations