Advertisement

Live-Attenuated Bacterial Vectors for Delivery of Mucosal Vaccines, DNA Vaccines, and Cancer Immunotherapy

  • Sudeep KumarEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 26)

Abstract

Vaccines save millions of lives each year from various life-threatening infectious diseases, and there are more than 20 vaccines currently licensed for human use worldwide. Moreover, in recent decades immunotherapy has become the mainstream therapy, which highlights the tremendous potential of immune response mediators, including vaccines for prevention and treatment of various forms of cancer. However, despite the tremendous advances in microbiology and immunology, there are several vaccine preventable diseases which still lack effective vaccines. Classically, weakened forms (attenuated) of pathogenic microbes were used as vaccines. Although the attenuated microbes induce effective immune response, a significant risk of reversion to pathogenic forms remains. While in the twenty-first century, with the advent of genetic engineering, microbes can be tailored with desired properties.

In this review, I have focused on the use of genetically modified bacteria for the delivery of vaccine antigens. More specifically, the live-attenuated bacteria, derived from pathogenic bacteria, possess many features that make them highly suitable vectors for the delivery of vaccine antigens. Bacteria can theoretically express any heterologous gene or can deliver mammalian expression vectors harboring vaccine antigens (DNA vaccines). These properties of live-attenuated microbes are being harnessed to make vaccines against several infectious and noninfectious diseases. In this regard, I have described the desired features of live-attenuated bacterial vectors and the mechanisms of immune responses manifested by live-attenuated bacterial vectors. Interestingly anaerobic bacteria are naturally attracted to tumors, which make them suitable vehicles to deliver tumor-associated antigens thus I have discussed important studies investigating the role of bacterial vectors in immunotherapy. Finally, I have provided important discussion on novel approaches for improvement and tailoring of live-attenuated bacterial vectors for the generation of desired immune responses.

Keywords

Vaccine Bacterial vaccine DNA vaccine Mucosal vaccine delivery Immunotherapy Vibrio cholerae Escherichia coli 

References

  1. Abdul-Wahid A, Faubert G (2007) Mucosal delivery of a transmission-blocking DNA vaccine encoding Giardia lamblia CWP2 by Salmonella typhimurium bactofection vehicle. Vaccine 25(50):8372–8383.  https://doi.org/10.1016/j.vaccine.2007.10.012 CrossRefGoogle Scholar
  2. Abi Abdallah DS, Bitar AP, Oliveira F, Meneses C, Park JJ, Mendez S et al (2014) A Listeria monocytogenes-based vaccine that secretes sand fly salivary protein LJM11 confers long-term protection against vector-transmitted Leishmania major. Infect Immun 82(7):2736–2745.  https://doi.org/10.1128/iai.01633-14 CrossRefGoogle Scholar
  3. Abomoelak B, Huygen K, Kremer L, Turneer M, Locht C (1999) Humoral and cellular immune responses in mice immunized with recombinant Mycobacterium bovis Bacillus Calmette-Guérin producing a pertussis toxin-tetanus toxin hybrid protein. Infect Immun 67(10):5100–5105Google Scholar
  4. Alimolaei M, Golchin M, Daneshvar H (2016) Oral immunization of mice against Clostridium perfringens epsilon toxin with a Lactobacillus casei vector vaccine expressing epsilon toxoid. Infect Genet Evol 40:282–287.  https://doi.org/10.1016/j.meegid.2016.03.020 CrossRefGoogle Scholar
  5. Allen JS, Dougan G, Strugnell RA (2000) Kinetics of the mucosal antibody secreting cell response and evidence of specific lymphocyte migration to the lung after oral immunisation with attenuated S. enterica var. typhimurium. FEMS Immunol Med Microbiol 27(4):275–281.  https://doi.org/10.1016/s0928-8244(99)00204-7 CrossRefGoogle Scholar
  6. Almeida JF, Breyner NM, Mahi M, Ahmed B, Benbouziane B, Boas PCBV et al (2016) Expression of fibronectin binding protein A (FnBPA) from Staphylococcus aureus at the cell surface of Lactococcus lactis improves its immunomodulatory properties when used as protein delivery vector. Vaccine 34(10):1312–1318.  https://doi.org/10.1016/j.vaccine.2016.01.022 CrossRefGoogle Scholar
  7. Amuguni H, Tzipori S (2012) Bacillus subtilis: a temperature resistant and needle free delivery system of immunogens. Hum Vaccin Immunother 8(7):979–986.  https://doi.org/10.4161/hv.20694 CrossRefGoogle Scholar
  8. Amuguni JH, Lee S, Kerstein KO, Brown DW, Belitsky BR, Herrmann JE et al (2011) Sublingually administered Bacillus subtilis cells expressing tetanus toxin C fragment induce protective systemic and mucosal antibodies against tetanus toxin in mice. Vaccine 29(29-30):4778–4784.  https://doi.org/10.1016/j.vaccine.2011.04.083 CrossRefGoogle Scholar
  9. Angelakopoulos H, Hohmann EL (2000) Pilot study of phoP/phoQ-deleted Salmonella enterica serovar typhimurium expressing Helicobacter pylori urease in adult volunteers. Infect Immun 68(4):2135–2141.  https://doi.org/10.1128/IAI.68.4.2135-2141.2000.Updated CrossRefGoogle Scholar
  10. Arnold H, Bumann D, Felies M, Gewecke B, Sörensen M, Gessner JE et al (2004) Enhanced immunogenicity in the murine airway mucosa with an attenuated Salmonella live vaccine expressing OprF-OprI from Pseudomonas aeruginosa. Infect Immun 72(11):6546–6553.  https://doi.org/10.1128/iai.72.11.6546-6553.2004 CrossRefGoogle Scholar
  11. Ashraf S, Kong W, Wang S, Yang J, Curtiss R (2011) Protective cellular responses elicited by vaccination with influenza nucleoprotein delivered by a live recombinant attenuated Salmonella vaccine. Vaccine 29(23):3990–4002.  https://doi.org/10.1016/j.vaccine.2011.03.066 CrossRefGoogle Scholar
  12. Bahey-El-Din M, Casey PG, Griffin BT, Gahan CGM (2008) Lactococcus lactis-expressing listeriolysin O (LLO) provides protection and specific CD8(+) T cells against Listeria monocytogenes in the murine infection model. Vaccine 26(41):5304–5314.  https://doi.org/10.1016/j.vaccine.2008.07.047 CrossRefGoogle Scholar
  13. Bai Y, Zhang YL, Wang JD, Zhang ZS, Zhou DY (2004) Construction of attenuated Salmonella typhimurium strain expressing Helicobacter pylori conservative region of adhesin antigen and its immunogenicity. World J Gastroenterol 10(17):2498–2502CrossRefGoogle Scholar
  14. Barry EM, Altboum Z, Losonsky G, Levine MM (2003) Immune responses elicited against multiple enterotoxigenic Escherichia coli fimbriae and mutant LT expressed in attenuated Shigella vaccine strains. Vaccine 21(5-6):333–340.  https://doi.org/10.1016/s0264-410x(02)00611-4 CrossRefGoogle Scholar
  15. Benitez AJ, McNair N, Mead JR (2009) Oral immunization with attenuated Salmonella enterica serovar typhimurium encoding Cryptosporidium parvum Cp23 and Cp40 antigens induces a specific immune response in mice. Clin Vaccine Immunol 16(9):1272–1278.  https://doi.org/10.1128/cvi.00089-09 CrossRefGoogle Scholar
  16. Berchtold C, Panthel K, Jellbauer S, Köhn B, Roider E, Partilla M et al (2009) Superior protective immunity against murine listeriosis by combined vaccination with CpG DNA and recombinant Salmonella enterica serovar typhimurium. Infect Immun 77(12):5501–5508.  https://doi.org/10.1128/iai.00700-09 CrossRefGoogle Scholar
  17. Bermúdez-Humarán LG, Kharrat P, Chatel J-M, Langella P (2011) Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb Cell Factories 10(Suppl 1):S4–S4.  https://doi.org/10.1186/1475-2859-10-s1-s4 CrossRefGoogle Scholar
  18. Bickels J, Kollender Y, Merinsky O, Meller I (2002) Coley’s toxin: historical perspective. Isr Med Assoc J 4(6):471–472Google Scholar
  19. Bobek V, Kolostova K, Pinterova D, Kacprzak G, Adamiak J, Kolodziej J et al (2010) A clinically relevant, syngeneic model of spontaneous, highly metastatic B16 mouse melanoma. J Med Virol 30(12):4799–4804.  https://doi.org/10.1002/jmv CrossRefGoogle Scholar
  20. Branger CG, Sun W, Torres-Escobar A, Perry R, Roland KL, Fetherston J et al (2010) Evaluation of Psn, HmuR and a modified LcrV protein delivered to mice by live attenuated Salmonella as a vaccine against bubonic and pneumonic Yersinia pestis challenge. Vaccine 29(2):274–282.  https://doi.org/10.1016/j.vaccine.2010.10.033 CrossRefGoogle Scholar
  21. Brockstedt DG, Giedlin MA, Leong ML, Bahjat KS, Gao Y, Luckett W et al (2004) Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci 101(38):13832–13837.  https://doi.org/10.1073/pnas.0406035101 CrossRefGoogle Scholar
  22. Broz P, Ohlson MB, Monack DM (2012) Innate immune response to Salmonella typhimurium, a model enteric pathogen. Gut Microbes 3(2):62–70.  https://doi.org/10.4161/gmic.19141 CrossRefGoogle Scholar
  23. Bumann D, Behre C, Behre K, Herz S, Gewecke B, Gessner JE et al (2010) Systemic, nasal and oral live vaccines against Pseudomonas aeruginosa: a clinical trial of immunogenicity in lower airways of human volunteers. Vaccine 28(3):707–713.  https://doi.org/10.1016/j.vaccine.2009.10.080 CrossRefGoogle Scholar
  24. Byrd W, Boedeker EC (2013) Attenuated Escherichia coli strains expressing the colonization factor antigen I (CFA/I) and a detoxified heat-labile enterotoxin (LThK63) enhance clearance of ETEC from the lungs of mice and protect mice from intestinal ETEC colonization and LT-induced f. Vet Immunol Immunopathol 152(1–2):57–67.  https://doi.org/10.1016/j.vetimm.2012.10.001 CrossRefGoogle Scholar
  25. Capozzo AVE, Cuberos L, Levine MM, Pasetti MF (2004) Mucosally delivered Salmonella live vector vaccines elicit potent immune responses against a foreign antigen in neonatal mice born to naive and immune mothers.pdf. Infect Immun 72(8):4637–4646.  https://doi.org/10.1128/iai.72.8.4637 CrossRefGoogle Scholar
  26. Chauchet X, Hannani D, Djebali S, Laurin D, Polack B, Marvel J et al (2016) Poly-functional and long-lasting anticancer immune response elicited by a safe attenuated Pseudomonas aeruginosa vector for antigens delivery. Mol Ther Oncolytics 3(August):16033–16033.  https://doi.org/10.1038/mto.2016.33 CrossRefGoogle Scholar
  27. Chen H, Schifferli DM (2003) Construction, characterization, and immunogenicity of an attenuated Salmonella enterica serovar typhimurium pgtE vaccine expressing fimbriae with integrated viral epitopes from the spiC promoter. Infect Immun 71(8):4664–4673.  https://doi.org/10.1128/iai.71.8.4664-4673.2003 CrossRefGoogle Scholar
  28. Chen H, Schifferli DM (2007) Comparison of a fimbrial versus an autotransporter display system for viral epitopes on an attenuated Salmonella vaccine vector. Vaccine 25(9):1626–1633.  https://doi.org/10.1016/j.vaccine.2006.11.006 CrossRefGoogle Scholar
  29. Chen I, Finn TM, Yanqing L, Guoming Q, Rappuoli R, Pizza M (1998) A recombinant live attenuated strain of Vibrio cholerae induces immunity against tetanus toxin and Bordetella pertussis tracheal colonization factor. Infect Immun 66(4):1648–1653Google Scholar
  30. Chen G, Dai Y, Chen J, Wang X, Tang B, Zhu Y et al (2011) Oral delivery of the Sj23LHD-GST antigen by Salmonella typhimurium type III secretion system protects against Schistosoma japonicum infection in mice. PLoS Negl Trop Dis 5(9):1–11.  https://doi.org/10.1371/journal.pntd.0001313 CrossRefGoogle Scholar
  31. Chen YY, Lin CW, Huang WF, Chang JR, Su IJ, Hsu CH et al (2017) Recombinant bacille Calmette???Guerin coexpressing Ag85b, CFP10, and interleukin-12 elicits effective protection against Mycobacterium tuberculosis. J Microbiol Immunol Infect 50(1):90–96.  https://doi.org/10.1016/j.jmii.2014.11.019 CrossRefGoogle Scholar
  32. Chin’ombe N, Ruhanya V (2013) Recombinant Salmonella bacteria vectoring HIV/AIDS vaccines. Open Virol J 7:121–126.  https://doi.org/10.2174/1874357901307010121 CrossRefGoogle Scholar
  33. Curtiss R 3rd, Wanda SY, Gunn BM, Zhang X, Tinge SA, Ananthnarayan V et al (2009) Salmonella enterica serovar typhimurium strains with regulated delayed attenuation in vivo. Infect Immun 77(3):1071–1082.  https://doi.org/10.1128/IAI.00693-08 CrossRefGoogle Scholar
  34. Cutting SM, Hong HA, Baccigalupi L, Ricca E (2009) Oral vaccine delivery by recombinant spore probiotics. Int Rev Immunol 28:487–505.  https://doi.org/10.3109/08830180903215605 CrossRefGoogle Scholar
  35. Dalla Pozza T, Yan H, Meek D, Guzmán CA, Walker MJ (1998) Construction and characterisation of Salmonella typhimurium aroA simultaneously expressing the five pertussis toxin subunits. Vaccine 16(5):522–529.  https://doi.org/10.1016/s0264-410x(97)80006-0 CrossRefGoogle Scholar
  36. Dharmasena MN, Hanisch BW, Wai TT, Kopecko DJ (2013) Stable expression of Shigella sonnei form I O-polysaccharide genes recombineered into the chromosome of live Salmonella oral vaccine vector Ty21a. Int J Med Microb 303(3):105–113.  https://doi.org/10.1016/j.ijmm.2013.01.001 CrossRefGoogle Scholar
  37. Dharmasena MN, Feuille CM, Starke CEC, Bhagwat AA, Stibitz S, Kopecko DJ (2016a) Development of an acid-resistant Salmonella Typhi Ty21a attenuated vector for improved oral vaccine delivery. PLoS ONE 11(9):1–23.  https://doi.org/10.1371/journal.pone.0163511 CrossRefGoogle Scholar
  38. Dharmasena MN, Osorio M, Filipova S, Marsh C, Stibitz S, Kopecko DJ (2016b) Stable expression of Shigella dysenteriae serotype 1 O-antigen genes integrated into the chromosome of live Salmonella oral vaccine vector Ty21a. Pathog Dis 74(8):ftw098–ftw098.  https://doi.org/10.1093/femspd/ftw098 CrossRefGoogle Scholar
  39. Digiandomenico A, Rao J, Joanna B, Goldberg JB (2004) Oral vaccination of BALB/c mice with Salmonella enterica serovar Typhimurium expressing Pseudomonas aeruginosa O antigen promotes increased survival in an acute fatal pneumonia model. Infect Immun 72(12):7012–7021.  https://doi.org/10.1128/iai.72.12.7012 CrossRefGoogle Scholar
  40. Ding J, Zheng Y, Wang Y, Dou Y, Chen X, Zhu X et al (2013) Immune responses to a recombinant attenuated Salmonella typhimurium strain expressing a Taenia solium oncosphere antigen TSOL18. Comp Immunol Microbiol Infect Dis 36(1):17–23.  https://doi.org/10.1016/j.cimid.2012.09.006 CrossRefGoogle Scholar
  41. Dunstan SJ, Simmons CP, Strugnell RA (1999) Use of in vivo-regulated promoters to deliver antigens from attenuated Salmonella enterica var. typhimurium. Infect Immun 67(10):5133–5141Google Scholar
  42. Fernandez MI, Sansonetti PJ (2003) Shigella interaction with intestinal epithelial cells determines the innate immune response in shigellosis. Int J Med Microbiol 293(1):55–67.  https://doi.org/10.1078/1438-4221-00244 CrossRefGoogle Scholar
  43. Ferreira Oliveira A, Almeida Cardoso S, Bruno dos Reis Almeida F, Licursi de Oliveira L, Pitondo-Silva A, Gomes Soares S et al (2012) Oral immunization with attenuated Salmonella vaccine expressing Escherichia coli O157: H7 intimin gamma triggers both systemic and mucosal humoral immunity in mice. Microbiol Immunol 56(8):513–522.  https://doi.org/10.1111/j.1348-0421.2012.00477.x CrossRefGoogle Scholar
  44. Forbes NS, Munn LL, Fukumura D, Jain RK (2003) Sparse initial entrapment of systemically injected Salmonella typhimurium leads to heterogeneous accumulation within tumors 1. Cancer Res 63:5188–5193Google Scholar
  45. Fraillery D, Baud D, Pang SYY, Schiller J, Bobst M, Zosso N et al (2007) Salmonella enterica serovar Tphi Ty21a expressing human papillomavirus type 16 L1 as a potential live vaccine against cervical cancer and typhoid fever. Clin Vaccine Immunol 14(10):1285–1295.  https://doi.org/10.1128/cvi.00164-07 CrossRefGoogle Scholar
  46. Frankel FR, Hegde S, Lieberman J, Paterson Y (1995) Induction of cell-mediated immune responses to human immunodeficiency virus type 1 Gag protein by using Listeria monocytogenes as a live vaccine vector. J Immunol 155(10):4775–4782Google Scholar
  47. Frey SE, Lottenbach KR, Hill H, Blevins TP, Yu Y, Zhang Y et al (2013) A Phase I, dose-escalation trial in adults of three recombinant attenuated Salmonella Typhi vaccine vectors producing Streptococcus pneumoniae surface protein antigen PspA. Vaccine 31(42):4874–4880.  https://doi.org/10.1016/j.vaccine.2013.07.049 CrossRefGoogle Scholar
  48. Friedman RS, Frankel FR, Xu Z, Lieberman J (2000) Induction of human immunodeficiency virus (HIV)-specific CD8 T-cell responses by Listeria monocytogenes and a hyperattenuated Listeria strain engineered to express HIV antigens. J Virol 74(21):9987–9993.  https://doi.org/10.1128/jvi.74.21.9987-9993.2000 CrossRefGoogle Scholar
  49. Fuge O, Vasdev N, Allchorne P, Green JS (2015) Immunotherapy for bladder cancer. Res Rep Urol 7:65–79.  https://doi.org/10.2147/rru.s63447 CrossRefGoogle Scholar
  50. Galán JE, Nakayama K, Curtiss R (1990) Cloning and characterization of the asd gene of Salmonella typhimurium: use in stable maintenance of recombinant plasmids in Salmonella vaccine strains. Gene 94(1):29–35.  https://doi.org/10.1016/0378-1119(90)90464-3 CrossRefGoogle Scholar
  51. Galen JE, Nair J, Wang JY, Steven S, Tanner MK, Sztein MB et al (1999) Optimization of plasmid maintenance in the attenuated live vector vaccine strain Salmonella typhi CVD 908- htrA. Infect Immun 67(12):6424–6433Google Scholar
  52. Galen JE, Zhao L, Chinchilla M, Wang JY, Pasetti MF, Green J et al (2004) Adaptation of the endogenous Salmonella enterica serovar Typhi clyA-encoded hemolysin for antigen export enhances the immunogenicity of anthrax protective antigen domain 4 expressed by the attenuated live-vector vaccine strain CVD 908-htrA. Infect Immun 72(12):7096–7106.  https://doi.org/10.1128/iai.72.12.7096 CrossRefGoogle Scholar
  53. Galen JE, Pasetti MF, Tennant S, Ruiz-Olvera P, Sztein MB, Levine MM (2009) Salmonella enterica serovar Typhi live vector vaccines finally come of age. Immunol Cell Biol 87(5):400–412.  https://doi.org/10.1038/icb.2009.31 CrossRefGoogle Scholar
  54. Galen JE, Wang JY, Chinchilla M, Vindurampulle C, Vogel JE, Levy H et al (2010) A new generation of stable, nonantibiotic, low-copy-number plasmids improves immune responses to foreign antigens Salmonella enterica serovar typhi live vectors. Infect Immun 78(1):337–347.  https://doi.org/10.1128/iai.00916-09 CrossRefGoogle Scholar
  55. Galen JE, Wang JY, Carrasco JA, Lloyd SA, Mellado-Sanchez G, Diaz-McNair J et al (2015) A bivalent typhoid live vector vaccine expressing both chromosome- and plasmid-encoded Yersinia pestis antigens fully protects against murine lethal pulmonary plague infection. Infect Immun 83(1):161–172.  https://doi.org/10.1128/iai.02443-14 CrossRefGoogle Scholar
  56. Gentschev I, Mollenkopf H, Sokolovic Z, Hess J, Kaufmann SH, Goebel W (1996) Development of antigen-delivery systems, based on the Escherichia coli hemolysin secretion pathway. Gene 179(1):133–140CrossRefGoogle Scholar
  57. Girón JA, Xu JG, González CR, Hone D, Kaper JB, Levine MM (1995) Simultaneous expression of CFA/I and CS3 colonization factor antigens of enterotoxigenic Escherichia coli by ΔaroC, ΔaroD Salmonella typhi vaccine strain CVD 908. Vaccine 13(10):939–946.  https://doi.org/10.1016/0264-410x(95)00003-j CrossRefGoogle Scholar
  58. González CR, Noriega FR, Huerta S, Santiago A, Vega M, Paniagua J et al (1998) Immunogenicity of a Salmonella typhi CVD 908 candidate vaccine strain expressing the major surface protein gp63 of Leishmania mexicana mexicana. Vaccine 16(9–10):1043–1052.  https://doi.org/10.1016/s0264-410x(97)00267-3 CrossRefGoogle Scholar
  59. Goulart C, Rodriguez D, Kanno AI, Converso TR, Lu YJ, Malley R, et al (2017) A combination of recombinant BCG expressing pneumococcal proteins induces cellular and humoral immune responses and protects against pneumococcal colonization and sepsis. Clin Vaccine Immunol CVI.00133-00117.  https://doi.org/10.1128/cvi.00133-17.
  60. Grode L, Kursar M, Fensterle J, Kaufmann SHE, Hess J (2002) Cell-mediated immunity induced by recombinant Mycobacterium bovis Bacille Calmette-Guérin strains against an intracellular bacterial pathogen: importance of antigen secretion or membrane-targeted antigen display as lipoprotein for vaccine efficacy. J Immunol 168(4):1869–1876.  https://doi.org/10.4049/jimmunol.168.4.1869 CrossRefGoogle Scholar
  61. Gu Q, Song D, Zhu M (2009) Oral vaccination of mice against Helicobacter pylori with recombinant Lactococcus lactis expressing urease subunit B. FEMS Immunol Med Microbiol 56(3):197–203.  https://doi.org/10.1111/j.1574-695X.2009.00566.x CrossRefGoogle Scholar
  62. Hajam IA, Lee JH (2017) An influenza HA and M2e based vaccine delivered by a novel attenuated Salmonella mutant protects mice against homologous H1N1 infection. Front Microbiol 8:1–13.  https://doi.org/10.3389/fmicb.2017.00872 CrossRefGoogle Scholar
  63. Hart BE, Asrican R, Lim SY, Sixsmith JD, Lukose R, Souther SJR et al (2015) Stable expression of lentiviral antigens by quality-controlled recombinant mycobacterium bovis BCG vectors. Clin Vaccine Immunol 22(7):726–741.  https://doi.org/10.1128/cvi.00075-15 CrossRefGoogle Scholar
  64. Hatano S, Tamura T, Umemura M, Matsuzaki G, Ohara N, Yoshikai Y (2016) Recombinant Mycobacterium bovis bacillus Calmette-Guérin expressing Ag85B-IL-7 fusion protein enhances IL-17A-producing innate γδ T cells. Vaccine 34(22):2490–2495.  https://doi.org/10.1016/j.vaccine.2016.03.096 CrossRefGoogle Scholar
  65. Hindle Z, Chatfield SN, Phillimore J, Bentley M, Johnson J, Cosgrove CA et al (2002) Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers. Infect Immun 70(7):3457–3467.  https://doi.org/10.1128/iai.70.7.3457-3467.2002 CrossRefGoogle Scholar
  66. Hoiseth SK, Stocker BAD (1981) Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291(5812):238–239.  https://doi.org/10.1038/291238a0 CrossRefGoogle Scholar
  67. Igwe EI, Geginat G, Rüssmann H (2002) Concomitant cytosolic delivery of two immunodominant Listerial antigens by Salmonella enterica serovar typhimurium confers superior protection against murine listeriosis. Infect Immun 70(12):7114–7119.  https://doi.org/10.1128/iai.70.12.7114-7119.2002 CrossRefGoogle Scholar
  68. Im E-J, Borducchi EN, Provine NM, McNally AG, Li S, Frankel FR et al (2013) An attenuated Listeria monocytogenes vector primes more potent simian immunodeficiency virus-specific mucosal immunity than DNA vaccines in mice. J Virol 87(8):4751–4755.  https://doi.org/10.1128/jvi.03085-12 CrossRefGoogle Scholar
  69. Isoda R, Simanski SP, Pathangey L, Stone AES, Brown TA (2007) Expression of a Porphyromonas gingivalis hemagglutinin on the surface of a Salmonella vaccine vector. Vaccine 25(1):117–126.  https://doi.org/10.1016/j.vaccine.2006.06.085 CrossRefGoogle Scholar
  70. Jenikova G, Hruz P, Andersson MK, Tejman-Yarden N, Ferreira PCD, Andersen YS et al (2011) ??1-giardin based live heterologous vaccine protects against Giardia lamblia infection in a murine model. Vaccine 29(51):9529–9537.  https://doi.org/10.1016/j.vaccine.2011.09.126 CrossRefGoogle Scholar
  71. Jennison AV, Verma NK (2004) Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiol Rev 28(1):43–58.  https://doi.org/10.1016/j.femsre.2003.07.002 CrossRefGoogle Scholar
  72. Jia Y, Yin Y, Duan F, Fu H, Hu M, Gao Y et al (2012) Prophylactic and therapeutic efficacy of an attenuated Listeria monocytogenes-based vaccine delivering HPV16 E7 in a mouse model. Int J Mol Med 30(6):1335–1342.  https://doi.org/10.3892/ijmm.2012.1136 CrossRefGoogle Scholar
  73. Jiang S, Rasmussen RA, Nolan KM, Frankel FR, Lieberman J, McClure HM et al (2007) Live attenuated Listeria monocytogenes expressing HIV Gag: immunogenicity in rhesus monkeys. Vaccine 25(42):7470–7479.  https://doi.org/10.1016/j.vaccine.2007.08.013 CrossRefGoogle Scholar
  74. Joan SSX, Pui-Fong J, Song AAL, Chang LY, Yusoff K, AbuBakar S et al (2016) Oral vaccine of Lactococcus lactis harbouring pandemic H1N1 2009 haemagglutinin1 and nisP anchor fusion protein elevates anti-HA1 sIgA levels in mice. Biotechnol Lett 38(5):793–799.  https://doi.org/10.1007/s10529-016-2034-2 CrossRefGoogle Scholar
  75. Johnson PV, Blair BM, Zeller S, Kotton CN, Hohmann EL (2011) Attenuated Listeria monocytogenes vaccine vectors expressing influenza A nucleoprotein: preclinical evaluation and oral inoculation of volunteers. Microbiol Immunol 55(5):304–317.  https://doi.org/10.1111/j.1348-0421.2011.00322.x CrossRefGoogle Scholar
  76. Kang HY, Srinivasan J, Curtiss R (2002) Immune responses to recombinant pneumococcal PspA antigen delivered by live attenuated Salmonella enterica serovar typhimurium vaccine. Infect Immun 70(4):1739–1749.  https://doi.org/10.1128/iai.70.4.1739 CrossRefGoogle Scholar
  77. Karpenko LI, Nekrasova NA, Ilyichev AA, Lebedev LR, Ignatyev GM, Agafonov AP et al (2004) Comparative analysis using a mouse model of the immunogenicity of artificial VLP and attenuated Salmonella strain carrying a DNA-vaccine encoding HIV-1 polyepitope CTL-immunogen. Vaccine 22(13–14):1692–1699.  https://doi.org/10.1016/j.vaccine.2003.09.050 CrossRefGoogle Scholar
  78. Kasinskas RW, Forbes NS (2007) Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer Res.  https://doi.org/10.1158/0008-5472.can-06-2618.CrossRefGoogle Scholar
  79. Khan SA, Stratford R, Wu T, McKelvie N, Bellaby T, Hindle Z et al (2003) Salmonella typhi and S. typhimurium derivatives harbouring deletions in aromatic biosynthesis and Salmonella Pathogenicity Island-2 (SPI-2) genes as vaccines and vectors. Vaccine 21(5–6):538–548.  https://doi.org/10.1016/s0264-410x(02)00410-3 CrossRefGoogle Scholar
  80. Kim SJ, Jun DY, Yang CH, Kim YH (2006) Expression of Helicobacter pylori cag12 gene in Lactococcus lactis MG1363 and its oral administration to induce systemic anti-Cag12 immune response in mice. Appl Microbiol Biotechnol 72(3):462–470.  https://doi.org/10.1007/11679363_58 CrossRefGoogle Scholar
  81. Kim SJ, Lee JY, Jun DY, Song JY, Lee WK, Cho MJ et al (2009) Oral administration of Lactococcus lactis expressing Helicobacter pylori Cag7-ct383 protein induces systemic anti-Cag7 immune response in mice. FEMS Immunol Med Microbiol 57(3):257–268.  https://doi.org/10.1111/j.1574-695X.2009.00605.x CrossRefGoogle Scholar
  82. Kim WK, Moon JY, Kim S, Hur J (2016) Comparison between immunization routes of live attenuated Salmonella typhimurium strains expressing BCSP31, Omp3b, and SOD of Brucella abortus in murine model. Front Microbiol 7:1–8.  https://doi.org/10.3389/fmicb.2016.00550 CrossRefGoogle Scholar
  83. Kobierecka PA, Olech B, Ksiazek M, Derlatka K, Adamska I, Majewski PM et al (2016) Cell wall anchoring of the Campylobacter antigens to Lactococcus lactis. Front Microbiol 7:1–18.  https://doi.org/10.3389/fmicb.2016.00165 CrossRefGoogle Scholar
  84. Kong Q, Liu Q, Roland KL, Curtiss R (2009) Regulated delayed expression of rfaH in an attenuated Salmonella enterica serovar typhimurium a vaccine enhances immunogenicity of outer membrane proteins and a heterologous antigen. Infect Immun 77(12):5572–5582.  https://doi.org/10.1128/iai.00831-09 CrossRefGoogle Scholar
  85. Kong Q, Liu Q, Jansen AM, Curtiss R (2010) Regulated delayed expression of rfc enhances the immunogenicity and protective efficacy of a heterologous antigen delivered by live attenuated Salmonella enterica vaccines. Vaccine 28(37):6094–6103.  https://doi.org/10.1016/j.vaccine.2010.06.074 CrossRefGoogle Scholar
  86. Kong Q, Six DA, Roland KL, Liu Q, Gu L, Reynolds CM et al (2011) Salmonella synthesizing 1-monophosphorylated Lipopolysaccharide exhibits low endotoxic activity while retaining its immunogenicity. J Immunol 187(1):412–423.  https://doi.org/10.4049/jimmunol.1100339 CrossRefGoogle Scholar
  87. Kong W, Brovold M, Koeneman BA, Clark-Curtiss J, Curtiss R (2012) Turning self-destructing Salmonella into a universal DNA vaccine delivery platform. Proc Natl Acad Sci U S A 109(47):19414–19419.  https://doi.org/10.1073/pnas.1217554109 CrossRefGoogle Scholar
  88. Koprowski H, Levine MM, Anderson RJ, Losonsky G, Pizza M, Barry EM (2000) Attenuated shigella flexneri 2a vaccine strain CVD 1204 expressing colonization factor antigen I and mutant heat-labile enterotoxin of enterotoxigenic escherichia coli. Infect Immun 68(9):4884–4892.  https://doi.org/10.1128/iai.68.9.4884-4892.2000 CrossRefGoogle Scholar
  89. Kotton CN, Lankowski AJ, Scott N, Sisul D, Chen LM, Raschke K et al (2006) Safety and immunogenicity of attenuated Salmonella enterica serovar Typhimurium delivering an HIV-1 Gag antigen via the Salmonella Type III secretion system. Vaccine 24(37–39):6216–6224.  https://doi.org/10.1016/j.vaccine.2006.05.094 CrossRefGoogle Scholar
  90. Kramer U, Rizos K, Apfel H, Ingo B, Lattemann CT, Autenrieth IB (2003) Autodisplay: development of an efficacious system for surface display of antigenic determinants in Salmonella vaccine strains. Infect Immun 71(4):1944–1952.  https://doi.org/10.1128/iai.71.4.1944 CrossRefGoogle Scholar
  91. Lakhashe SK, Velu V, Sciaranghella G, Siddappa NB, Dipasquale JM, Hemashettar G et al (2011) Prime-boost vaccination with heterologous live vectors encoding SIV gag and multimeric HIV-1 gp160 protein: efficacy against repeated mucosal R5 clade C SHIV challenges. Vaccine 29(34):5611–5622.  https://doi.org/10.1016/j.vaccine.2011.06.017 CrossRefGoogle Scholar
  92. Lalsiamthara J, Lee JH (2017) Brucella lipopolysaccharide reinforced Salmonella delivering Brucella immunogens protects mice against virulent challenge. Vet Microbiol 205:84–91.  https://doi.org/10.1016/j.vetmic.2017.05.012 CrossRefGoogle Scholar
  93. Lee C-H (2012) Engineering bacteria toward tumor targeting for cancer treatment: current state and perspectives. Appl Microbiol Biotechnol 93(2):517–523.  https://doi.org/10.1007/s00253-011-3695-3 CrossRefGoogle Scholar
  94. Li L, Hu X, Wu Z, Xiong S, Zhou Z, Wang X et al (2009) Immunogenicity of self-adjuvanticity oral vaccine candidate based on use of Bacillus subtilis spore displaying Schistosoma japonicum 26 KDa GST protein. Parasitol Res 105(6):1643–1651.  https://doi.org/10.1007/s00436-009-1606-7 CrossRefGoogle Scholar
  95. Li X, Xing Y, Guo L, Lv X, Song H, Xi T (2014) Oral immunization with recombinant Lactococcus lactis delivering a multi-epitope antigen CTB-UE attenuates Helicobacter pylori infection in mice. Pathog Dis 72(1):78–86.  https://doi.org/10.1111/2049-632x.12173 CrossRefGoogle Scholar
  96. Li Q-H, Jin G, Wang J-Y, Li H-N, Liu H, Chang X-Y et al (2016) Live attenuated Salmonella displaying HIV-1 10E8 epitope on fimbriae: systemic and mucosal immune responses in BALB/c mice by mucosal administration. Sci Rep 6(July):29556–29556.  https://doi.org/10.1038/srep29556 CrossRefGoogle Scholar
  97. Liang ZZ, Sherrid AM, Wallecha A, Kollmann TR (2014) Listeria monocytogenes: a promising vehicle for neonatal vaccination. Hum Vaccin Immunother 10(4):1036–1046.  https://doi.org/10.4161/hv.27999 CrossRefGoogle Scholar
  98. Lin IYC, Van TTH, Smooker PM (2015) Live-attenuated bacterial vectors: tools for vaccine and therapeutic agent delivery. Vaccine 3(4):940–972CrossRefGoogle Scholar
  99. Liu D-s, Hu S-j, Zhou N-j, Xie Y, Cao J (2011) Construction and characterization of recombinant attenuated Salmonella typhimurium expressing the babA2/ureI fusion gene of Helicobacter pylori. Clin Res Hepatol Gastroenterol 35(10):655–660.  https://doi.org/10.1016/j.clinre.2011.06.007 CrossRefGoogle Scholar
  100. Loessner H, Endmann A, Leschner S, Westphal K, Rohde M, Miloud T et al (2007) Remote control of tumour-targeted Salmonella enterica serovar Typhimurium by the use of l-arabinose as inducer of bacterial gene expression in vivo. Cell Microbiol 9(6):1529–1537.  https://doi.org/10.1111/j.1462-5822.2007.00890.x CrossRefGoogle Scholar
  101. Luo F, Feng Y, Liu M, Li P, Pan Q, Jeza VT et al (2007) Type IVB pilus operon promoter controlling expression of the severe acute respiratory syndrome-associated coronavirus nucleocapsid gene in Salmonella enterica serovar Typhi elicits full immune response by intranasal vaccination. Clin Vaccine Immunol 14(8):990–997.  https://doi.org/10.1128/cvi.00076-07 CrossRefGoogle Scholar
  102. Luria-Perez R, Cedillo-Barron L, Santos-Argumedo L, Ortiz-Navarrete VF, Ocaña-Mondragon A, Gonzalez-Bonilla CR (2007) A fusogenic peptide expressed on the surface of Salmonella enterica elicits CTL responses to a dengue virus epitope. Vaccine 25(27):5071–5085.  https://doi.org/10.1016/j.vaccine.2007.03.047 CrossRefGoogle Scholar
  103. Mahant A, Saubi N, Eto Y, Guitart N, Gatell JM, Hanke T et al (2017) Preclinical development of BCG.HIVA2auxo.int, harboring an integrative expression vector, for a HIV-TB Pediatric vaccine. Enhancement of stability and specific HIV-1 T-cell immunity. Hum Vaccin Immunother 5515:1–13.  https://doi.org/10.1080/21645515.2017.1316911 CrossRefGoogle Scholar
  104. Mann BJ, Burkholder BV, Lockhart LA (1997) Protection in a gerbil model of amebiasis by oral immunization with Salmonella expressing the galactose/N-acetyl D-galactosamine inhibitable lectin of Entamoeba histolytica. Vaccine 15(6-7):659–663.  https://doi.org/10.1016/s0264-410x(96)00236-8 CrossRefGoogle Scholar
  105. Mannam P, Jones KF, Geller BL (2004) Mucosal vaccine made from live, recombinant Lactococcus lactis protects mice against pharyngeal infection with Streptococcus pyogenes. Infect Immun 72(6):3444–3450.  https://doi.org/10.1128/iai.72.6.3444-3450.2004 CrossRefGoogle Scholar
  106. Matos MN, Cazorla SI, Bivona AE, Morales C, Guzman CA, Malchiodi EL (2014) Tc52 amino-terminal-domain DNA carried by attenuated Salmonella enterica serovar typhimurium induces protection against a trypanosoma cruzi lethal challenge. Infect Immun 82(10):4265–4275.  https://doi.org/10.1128/iai.02190-14 CrossRefGoogle Scholar
  107. Maurelli AT, Sansonetti PJ (1988) Genetic determinants of Shigella pathogenicity. Annu Rev Microbiol 42:127–150.  https://doi.org/10.1146/annurev.mi.42.100188.001015 CrossRefGoogle Scholar
  108. McLaughlin HP, Bahey-El-Din M, Casey PG, Hill C, Gahan CGM (2013) A mutant in the Listeria monocytogenes furregulated virulence locus (frvA) induces cellular immunity and confers protection against listeriosis in mice. J Med Microbiol 62(PART 2):185–190.  https://doi.org/10.1099/jmm.0.049114-0 CrossRefGoogle Scholar
  109. Mei Y, Zhao L, Liu Y, Gong H, Song Y, Lei L et al (2017) Combining DNA vaccine and AIDA-1 in attenuated Salmonella activates tumor-specific CD4 + and CD8 + T-cell responses. Cancer Immunol Res 5(6):503–514.  https://doi.org/10.1158/2326-6066.cir-16-0240-t CrossRefGoogle Scholar
  110. Mellouk N, Enninga J (2016) Cytosolic access of intracellular bacterial pathogens: the Shigella paradigm. Front Cell Infect Microbiol 6:35.  https://doi.org/10.3389/fcimb.2016.00035 CrossRefGoogle Scholar
  111. Mignon C, Sodoyer R, Werle B (2015) Antibiotic-free selection in biotherapeutics: now and forever. Pathogens 4(2):157–181.  https://doi.org/10.3390/pathogens4020157 CrossRefGoogle Scholar
  112. Miki K, Nagata T, Tanaka T, Kim YH, Uchijima M, Ohara N et al (2004) Induction of protective cellular immunity against Mycobacterium tuberculosis by recombinant attenuated self-destructing Listeria monocytogenes strains harboring eukaryotic expression plasmids for antigen 85 complex and MPB/MPT51. Infect Immun 72(4):2014–2021CrossRefGoogle Scholar
  113. Moliva JI, Turner J, Torrelles JB (2017) Immune responses to Bacillus Calmette-Guerin vaccination: why do they fail to protect against mycobacterium tuberculosis? Front Immunol 8:407.  https://doi.org/10.3389/fimmu.2017.00407 CrossRefGoogle Scholar
  114. Nascimento IP, Dias WO, Quintilio W, Christ AP, Moraes JF, Vancetto MDC et al (2008) Neonatal immunization with a single dose of recombinant BCG expressing subunit S1 from pertussis toxin induces complete protection against Bordetella pertussis intracerebral challenge. Microbes Infect 10(2):198–202.  https://doi.org/10.1016/j.micinf.2007.10.010 CrossRefGoogle Scholar
  115. Nascimento IP, Dias WO, Quintilio W, Hsu T, Jacobs WR, Leite LCC (2009) Construction of an unmarked recombinant BCG expressing a pertussis antigen by auxotrophic complementation: protection against Bordetella pertussis challenge in neonates. Vaccine 27(52):7346–7351.  https://doi.org/10.1016/j.vaccine.2009.09.043 CrossRefGoogle Scholar
  116. Noriega FR, Losonsky G, Lauderbaugh C, Liao FM, Wang JY, Levine MM (1996) Engineered deltaguaB-A deltavirG Shigella flexneri 2a strain CVD 1205: construction, safety, immunogenicity, and potential efficacy as a mucosal vaccine. Infect Immun 64(8):3055–3061Google Scholar
  117. Orr N, Galen JE, Levine MM (2001) Novel use of anaerobically induced promoter, dmsA, for controlled expression of fragment C of tetanus toxin in live attenuated Salmonella enterica serovar Typhi strain CVD 908-htrA. Vaccine 19(13–14):1694–1700.  https://doi.org/10.1016/s0264-410x(00)00400-x CrossRefGoogle Scholar
  118. Pasetti MF, Anderson RJ, Noriega FR, Levine MM, Sztein MB (1999) Attenuated deltaguaBA Salmonella typhi vaccine strain CVD 915 as a live vector utilizing prokaryotic or eukaryotic expression systems to deliver foreign antigens and elicit immune responses. Clin Immunol (Orlando, Fla) 92(1):76–89.  https://doi.org/10.1006/clim.1999.4733 CrossRefGoogle Scholar
  119. Pasetti MF, Pickett TE, Levine MM, Sztein MB (2000) A comparison of immunogenicity and in vivo distribution of Salmonella enterica serovar Typhi and Typhimurium live vector vaccines delivered by mucosal routes in the murine model. Vaccine 18(28):3208–3213.  https://doi.org/10.1016/s0264-410x(00)00142-0 CrossRefGoogle Scholar
  120. Pasetti MF, Salerno-Gonçalves R, Sztein MB (2002) Salmonella enterica serovar Typhi live vector vaccines delivered intranasally elicit regional and systemic specific CD8+ major histocompatibility class I-restricted cytotoxic T lymphocytes. Infect Immun 70(8):4009–4018.  https://doi.org/10.1128/iai.70.8.4009-4018.2002 CrossRefGoogle Scholar
  121. Pasetti MF, Simon JK, Sztein MB, Levine MM (2011) Immunology of gut mucosal vaccines. Immunol Rev 239(1):125–148.  https://doi.org/10.1111/j.1600-065X.2010.00970.x CrossRefGoogle Scholar
  122. Pathangey L, Kohler JJ, Isoda R, Brown TA (2009) Effect of expression level on immune responses to recombinant oral Salmonella enterica serovar Typhimurium vaccines. Vaccine 27(20):2707–2711.  https://doi.org/10.1016/j.vaccine.2009.02.072 CrossRefGoogle Scholar
  123. Pei Z, Jiang X, Yang Z, Ren X, Gong H, Reeves M et al (2015) Oral delivery of a novel attenuated salmonella vaccine expressing influenza a virus proteins protects mice against H5N1 and H1N1 viral infection. PLoS ONE 10(6):1–20.  https://doi.org/10.1371/journal.pone.0129276 CrossRefGoogle Scholar
  124. Peters C, Domann E, Darbouche A, Chakraborty T, Mielke MEA (2003) Tailoring host immune responses to Listeria by manipulation of virulence genes – the interface between innate and acquired immunity. FEMS Immunol Med Microbiol 35(3):243–253.  https://doi.org/10.1016/s0928-8244(02)00469-8 CrossRefGoogle Scholar
  125. Pham OH, McSorley SJ (2015) Protective host immune responses to Salmonella infection. Future Microbiol 10(1):101–110.  https://doi.org/10.2217/fmb.14.98 CrossRefGoogle Scholar
  126. Pilgrim S, Stritzker J, Schoen C, Kolb-Mäurer A, Geginat G, Loessner MJ et al (2003) Bactofection of mammalian cells by Listeria monocytogenes: improvement and mechanism of DNA delivery. Gene Ther 10(24):2036–2045.  https://doi.org/10.1038/sj.gt.3302105 CrossRefGoogle Scholar
  127. Ramirez K, Capozzo AVE, Lloyd SA, Sztein MB, Nataro JP, Pasetti MF (2009) Mucosally delivered Salmonella typhi expressing the Yersinia pestis F1 antigen elicits mucosal and systemic immunity early in life and primes the neonatal immune system for a vigorous anamnestic response to parenteral F1 boost. J Immunol (Baltimore, Md: 1950) 182(2):1211–1222 182/2/1211 [pii]CrossRefGoogle Scholar
  128. Ranallo RT, Fonseka CP, Cassels F, Srinivasan J, Venkatesan MM (2005) Construction and characterization of bivalent Shigella flexneri 2a vaccine strains SC608(pCFAI) and SC608(pCFAI/LTB) that express antigens from enterotoxigenic Escherichia coli. Infect Immun 73(1):258–267.  https://doi.org/10.1128/iai.73.1.258-267.2005 CrossRefGoogle Scholar
  129. Raupach B, Kaufmann SHE (2001) Bacterial virulence, proinflammatory cytokines and host immunity: how to choose the appropriate Salmonella vaccine strain? Microbes Infect 3(14–15):1261–1269.  https://doi.org/10.1016/s1286-4579(01)01486-1 CrossRefGoogle Scholar
  130. Rayevskaya MV, Frankel FR (2001) Systemic immunity and mucosal immunity are induced against human immunodeficiency virus Gag protein in mice by a new hyperattenuated strain of Listeria monocytogenes. J Virol 75(6):2786–2791.  https://doi.org/10.1128/jvi.75.6.2786-2791.2001 CrossRefGoogle Scholar
  131. Rayevskaya M, Kushnir N, Frankel FR (2002) Safety and immunogenicity in neonatal mice of a hyperattenuated Listeria vaccine directed against human immunodeficiency virus. J Virol 76(2):918–922.  https://doi.org/10.1128/jvi.76.2.918-922.2002 CrossRefGoogle Scholar
  132. Rezende CAF, De Moraes MTB, Matos DCDS, McIntoch D, Armoa GRG (2005) Humoral response and genetic stability of recombinant BCG expressing hepatitis B surface antigens. J Virol Methods 125(1):1–9.  https://doi.org/10.1016/j.jviromet.2004.11.026 CrossRefGoogle Scholar
  133. Roberts M, Chatfield S, Pickard D, Li J, Bacon A (2000) Comparison of abilities of Salmonella enterica serovar Typhimurium aroA aroD and aroA htrA mutants to act as live vectors. Infect Immun 68(10):6041–6043.  https://doi.org/10.1128/iai.68.10.6041-6043.2000 CrossRefGoogle Scholar
  134. Roche JK, Rojo AL, Costa LB, Smeltz R, Manque P, Woehlbier U et al (2013) Intranasal vaccination in mice with an attenuated Salmonella enterica Serovar 908htr A expressing Cp15 of Cryptosporidium: impact of malnutrition with preservation of cytokine secretion. Vaccine 31(6):912–918.  https://doi.org/10.1016/j.vaccine.2012.12.007 CrossRefGoogle Scholar
  135. Rojas RLG, Gomes PADP, Bentancor LV, Sbrogio-Almeida ME, Costa SOP, Massis LM et al (2010) Salmonella enterica serovar typhimurium vaccine strains expressing a nontoxic shiga-like toxin 2 derivative induce partial protective immunity to the toxin expressed by enterohemorrhagic escherichia coli. Clin Vaccine Immunol 17(4):529–536.  https://doi.org/10.1128/cvi.00495-09 CrossRefGoogle Scholar
  136. Ryan ET, Butterton JR, Smith RN, Carroll PA, Crean TI, Calderwood SB (1997) Protective immunity against Clostridium difficile toxin A induced by oral immunization with a live, attenuated Vibrio cholerae vector strain. Infect Immun 65(7):2941–2949Google Scholar
  137. Ryan ET, Cream TI, John M, Butterton JR, Clements JD, Calderwood SB (1999) In vivo expression and immunoadjuvancy of a mutant of heat-labile enterotoxin of Escherichia coli in vaccine and vector strains of Vibrio cholerae. Infect Immun 67(4):1694–1701Google Scholar
  138. Ryan ET, Crean TI, Kochi SK, John M, Luciano AA, Killeen KP et al (2000) Development of a ??glnA balanced lethal plasmid system for expression of heterologous antigens by attenuated vaccine vector strains of Vibrio cholerae. Infect Immun 68(1):221–226.  https://doi.org/10.1128/IAI.68.1.221-226.2000.Updated CrossRefGoogle Scholar
  139. Saklani-Jusforgues H, Fontan E, Soussi N, Milon G, Goossens PL (2003) Enteral immunization with attenuated recombinant Listeria monocytogenes as a live vaccine vector: organ-dependent dynamics of CD4 T lymphocytes reactive to a Leishmania major tracer epitope. Infect Immun 71(3):1083–1090.  https://doi.org/10.1128/iai.71.3.1083-1090.2003 CrossRefGoogle Scholar
  140. Schoen C, Stritzker J, Goebel W, Pilgrim S (2004) Bacteria as DNA vaccine carriers for genetic immunization. Int J Med Microbiol 294(5):319–335.  https://doi.org/10.1016/j.ijmm.2004.03.001 CrossRefGoogle Scholar
  141. Sciaranghella G, Lakhashe SK, Ayash-Rashkovsky M, Mirshahidi S, Siddappa NB, Novembre FJ et al (2011) A live attenuated Listeria monocytogenes vaccine vector expressing SIV Gag is safe and immunogenic in macaques and can be administered repeatedly. Vaccine 29(3):476–486.  https://doi.org/10.1016/j.vaccine.2010.10.072 CrossRefGoogle Scholar
  142. Sevil Domènech VE, Panthel K, Winter SE, Rüssmann H (2008) Heterologous prime-boost immunizations with different Salmonella serovars for enhanced antigen-specific CD8 T-cell induction. Vaccine 26(15):1879–1886.  https://doi.org/10.1016/j.vaccine.2008.01.044 CrossRefGoogle Scholar
  143. Shahabi V, Seavey MM, Maciag PC, Rivera S, Wallecha A (2011) Development of a live and highly attenuated Listeria monocytogenes-based vaccine for the treatment of Her2/neu-overexpressing cancers in human. Cancer Gene Ther 18(1):53–62.  https://doi.org/10.1038/cgt.2010.48 CrossRefGoogle Scholar
  144. Shi H, Santander J, Brenneman KE, Wanda SY, Wang S, Senechal P et al (2010) Live recombinant Salmonella typhi vaccines constructed to investigate the role of rpoS in eliciting immunity to a heterologous antigen. PLoS ONE 5(6).  https://doi.org/10.1371/journal.pone.0011142 CrossRefGoogle Scholar
  145. Sibley L, Reljic R, Radford DS, Huang JM, Hong HA, Cranenburgh RM et al (2014) Recombinant Bacillus subtilis spores expressing MPT64 evaluated as a vaccine against tuberculosis in the murine model. FEMS Microbiol Lett 358(2):170–179.  https://doi.org/10.1111/1574-6968.12525 CrossRefGoogle Scholar
  146. Sizemore DR, Warner EA, Lawrence JA, Thomas LJ, Roland KL, Killeen KP (2012) Construction and screening of attenuated ??phoP/Q Salmonella typhimurium vectored plague vaccine candidates. Hum Vaccin Immunother 8(3):371–383.  https://doi.org/10.4161/hv.8.3.18670 CrossRefGoogle Scholar
  147. Soussi N, Saklani-Jusforgues H, Colle JH, Milon G, Glaichenhaus N, Goossens PL (2002) Effect of intragastric and intraperitoneal immunisation with attenuated and wild-type LACK-expressing Listeria monocytogenes on control of murine Leishmania major infection. Vaccine 20(21–22):2702–2712.  https://doi.org/10.1016/s0264-410x(02)00198-6 CrossRefGoogle Scholar
  148. Spreng S, Gentschev I, Goebel W, Weidinger G, Ter Meulen V, Niewiesk S (2000) Salmonella vaccines secreting measles virus epitopes induce protective immune responses against measles virus encephalitis. Microbes Infect 2(14):1687–1692.  https://doi.org/10.1016/s1286-4579(00)01325-3 CrossRefGoogle Scholar
  149. Starks H, Bruhn KW, Shen H, Barry RA, Dubensky TW, Brockstedt D et al (2004) Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. J Immunol 173(1):420–427.  https://doi.org/10.4049/jimmunol.173.1.420 CrossRefGoogle Scholar
  150. Stasilojc M, Hinc K, Peszynska-Sularz G, Obuchowski M, Iwanicki A (2015) Recombinant Bacillus subtilis spores elicit Th1/Th17-polarized immune response in a Murine model of Helicobacter pylori vaccination. Mol Biotechnol 57(8):685–691.  https://doi.org/10.1007/s12033-015-9859-0 CrossRefGoogle Scholar
  151. Stevens R, Howard KE, Nordone S, Burkhard M, Dean GA (2004) Oral immunization with recombinant Listeria monocytogenes controls virus load after vaginal challenge with feline immunodeficiency virus. J Virol 78(15):8210–8218.  https://doi.org/10.1128/jvi.78.15.8210-8218.2004 CrossRefGoogle Scholar
  152. Strain SL-v, Altboum Z, Levine MM, Galen JE, Barry EM (2003) Genetic characterization and immunogenicity of coli surface antigen 4 from enterotoxigenic Escherichia coli when it is expressed in a Shigella live-vector strain. Infect Immun 71(3):1352–1360.  https://doi.org/10.1128/iai.71.3.1352 CrossRefGoogle Scholar
  153. Strugnell R, Dougan G, Chatfield S, Charles I, Fairweather N, Tite J et al (1992) Characterization of a Salmonella typhimurium aro vaccine strain expressing the P.69 antigen of Bordetella pertussis. Infect Immun 60(10):3994–4002Google Scholar
  154. Sun W, Olinzock J, Wang S, Sanapala S, Curtiss R (2014) Evaluation of YadC protein delivered by live attenuated Salmonella as a vaccine against plague. Pathog Dis 70(2):119–131.  https://doi.org/10.1111/2049-632x.12076 CrossRefGoogle Scholar
  155. Szatraj K, Szczepankowska AK, Chmielewska-Jeznach M (2017) Lactic acid bacteria – promising vaccine vectors: possibilities, limitations, doubts. J Appl Microbiol 123(2):325–339.  https://doi.org/10.1111/jam.13446 CrossRefGoogle Scholar
  156. Tacket C, Hone DM, Curtiss ROY, Kelly SM, Losonsky G, Guers L et al (1992) Comparison of the safety and immunogenicity of DaroC DaroD and & cya Acrp Salmonella typhi strains in adult volunteers. Infect Immun 3:536–541Google Scholar
  157. Tacket CO, Kelly SM, Schödel F, Losonsky G, Nataro JP, Edelman R et al (1997) Safety and immunogenicity in humans of an attenuated Salmonella typhi vaccine vector strain expressing plasmid-encoded hepatitis B antigens stabilized by the Asd-balanced lethal vector system. Infect Immun 65(8):3381–3385Google Scholar
  158. Tacket CO, Sztein MB, Wasserman SS, Losonsky G, Kotloff KL, Wyant TL et al (2000) Phase 2 clinical trial of attenuated Salmonella enterica serovar Typhi oral live vector vaccine CVD 908-htrAin U.S. volunteers. Infect Immun 68(3):1196–1201.  https://doi.org/10.1128/iai.68.3.1196-1201.2000 CrossRefGoogle Scholar
  159. Tobias J, Lebens M, Wai SN, Holmgren J, Svennerholm AM (2017) Surface expression of Helicobacter pylori HpaA adhesion antigen on Vibrio cholerae, enhanced by co-expressed enterotoxigenic Escherichia coli fimbrial antigens. Microb Pathog 105:177–184.  https://doi.org/10.1016/j.micpath.2017.02.021 CrossRefGoogle Scholar
  160. Torres-Escobar A, Juárez-Rodríguez MD, Gunn BM, Branger CG, Tinge SA, Curtiss R (2010) Fine-tuning synthesis of yersinia pestis lcrv from runaway-like replication balanced-lethal plasmid in a salmonella enterica serovar typhimurium vaccine induces protection against a lethal y. pestis challenge in mice. Infect Immun 78(6):2529–2543.  https://doi.org/10.1128/iai.00005-10 CrossRefGoogle Scholar
  161. Tvinnereim AR, Hamilton SE, Harty JT (2002) CD8 + -T-cell response to secreted and nonsecreted antigens delivered by recombinant Listeria monocytogenes during secondary infection. Infect Immun 70(1):153–162.  https://doi.org/10.1128/iai.70.1.153 CrossRefGoogle Scholar
  162. Venkataswamy MM, Ng TW, Kharkwal SS, Carreño LJ, Johnson AJ, Kunnath-Velayudhan S et al (2014) Improving Mycobacterium bovis bacillus calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells. PLoS ONE 9(9):e108383.  https://doi.org/10.1371/journal.pone.0108383 CrossRefGoogle Scholar
  163. Verch T, Pan Z-k, Paterson Y (2004) Listeria monocytogenes-based antibiotic resistance gene-free antigen delivery system applicable to other bacterial vectors and DNA vaccines. Infect Immun 72(11):6418–6425.  https://doi.org/10.1128/iai.72.11.6418 CrossRefGoogle Scholar
  164. Wallecha A, Maciag P, Rivera S, Paterson Y, Shahabi V (2009) Construction and characterization of an attenuated Listeria monocytogenes strain for clinical use in cancer immunotherapy. Clin Vaccine Immunol 16(1):96–103.  https://doi.org/10.1128/cvi.00274-08 CrossRefGoogle Scholar
  165. Wang JY, Pasetti MF, Noriega FR, Anderson RJ, Wasserman SS, James E et al (2001) Construction, genotypic and phenotypic characterization, and immunogenicity of attenuated Δ guaBA Salmonella enterica Serovar Typhi S. Infect Immun 69(8):4734–4741.  https://doi.org/10.1128/iai.69.8.4734 CrossRefGoogle Scholar
  166. Wang Ql, Pan Q, Ma Y, Wang K, Sun P, Liu S et al (2009) An attenuated Salmonella-vectored vaccine elicits protective immunity against Mycobacterium tuberculosis. Vaccine 27(48):6712–6722.  https://doi.org/10.1016/j.vaccine.2009.08.096 CrossRefGoogle Scholar
  167. Wang S, Li Y, Scarpellini G, Kong W, Shi HY, Baek CH et al (2010) Salmonella vaccine vectors displaying delayed antigen synthesis in vivo to enhance immunogenicity. Infect Immun 78(9):3969–3980.  https://doi.org/10.1128/iai.00444-10 CrossRefGoogle Scholar
  168. Wang S, Li Y, Shi H, Sun W, Roland KL, Curtiss R (2011) Comparison of a regulated delayed antigen synthesis system with in vivo-inducible promoters for antigen delivery by live attenuated Salmonella vaccines. Infect Immun 79(2):937–949.  https://doi.org/10.1128/iai.00445-10 CrossRefGoogle Scholar
  169. Wang S, Kong Q, Curtiss R (2013) New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb Pathog 58:17–28.  https://doi.org/10.1016/j.micpath.2012.10.006 CrossRefGoogle Scholar
  170. Wyszyńska A, Raczko A, Lis M, Jagusztyn-Krynicka EK (2004) Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter. Vaccine 22(11–12):1379–1389.  https://doi.org/10.1016/j.vaccine.2003.11.001 CrossRefGoogle Scholar
  171. Xin W, Li Y, Mo H, Roland KL, Curtiss R (2009) PspA family fusion proteins delivered by attenuated Salmonella enterica serovar typhimurium extend and enhance protection against Streptococcus pneumoniae. Infect Immun 77(10):4518–4528.  https://doi.org/10.1128/iai.00486-09 CrossRefGoogle Scholar
  172. Xiong X, Jiao J, Gregory AE, Wang P, Bi Y, Wang X et al (2017) Identification of Coxiella burnetii CD8 + T-cell epitopes and delivery by attenuated Listeria monocytogenes as a vaccine vector in a C57BL/6 mouse model. J Infect Dis 215(10):1580–1589.  https://doi.org/10.1093/infdis/jiw470 CrossRefGoogle Scholar
  173. Xu C, Li ZS, Du YD, Tu ZX, Gong YF, Jin J et al (2005) Construction of a recombinant attenuated Salmonella typhimurium DNA vaccine carrying Helicobacter pylori hpaA. World J Gastroenterol 11(1):114–117CrossRefGoogle Scholar
  174. Yang Y, Zhang Z, Yang J, Chen X, Cui S, Zhu X (2010) Oral vaccination with Ts87 DNA vaccine delivered by attenuated Salmonella typhimurium elicits a protective immune response against Trichinella spiralis larval challenge. Vaccine 28(15):2735–2742.  https://doi.org/10.1016/j.vaccine.2010.01.026 CrossRefGoogle Scholar
  175. Yang X-q, Zhao Y-g, Chen X-q, Jiang B, Sun D-y (2013) The protective effect of recombinant Lactococcus lactis oral vaccine on a Clostridium difficile-infected animal model. BMC Gastroenterol 13(1):117–117.  https://doi.org/10.1186/1471-230x-13-117 CrossRefGoogle Scholar
  176. Yu J, Chen T, Xie Z, Liang P, Qu H, Shang M et al (2015) Oral delivery of Bacillus subtilis spore expressing enolase of Clonorchis sinensis in rat model: induce systemic and local mucosal immune responses and has no side effect on liver function. Parasitol Res 114(7):2499–2505.  https://doi.org/10.1007/s00436-015-4449-4 CrossRefGoogle Scholar
  177. Zamri HF, Shamsudin MN, Rahim RA, Neela V (2012) Oral vaccination with Lactococcus lactis expressing the Vibrio cholerae Wzm protein to enhance mucosal and systemic immunity. Vaccine 30(21):3231–3238.  https://doi.org/10.1016/j.vaccine.2012.02.012 CrossRefGoogle Scholar
  178. Zenewicz LA, Shen H (2007) Innate and adaptive immune responses to Listeria monocytogenes: a short overview. Microbes Infect 9(10):1208–1215.  https://doi.org/10.1016/j.micinf.2007.05.008 CrossRefGoogle Scholar
  179. Zhang Q, Ma Q, Li Q, Yao W, Wang C (2011) Enhanced protection against nasopharyngeal carriage of Streptococcus pneumoniae elicited by oral multiantigen DNA vaccines delivered in attenuated Salmonella typhimurium. Mol Biol Rep 38(2):1209–1217.  https://doi.org/10.1007/s11033-010-0219-7 CrossRefGoogle Scholar
  180. Zhang D, Huang X, Zhang X, Cao S, Wen X, Wen Y et al (2016a) Construction of an oral vaccine for transmissible gastroenteritis virus based on the TGEV N gene expressed in an attenuated Salmonella typhimurium vector. J Virol Methods 227:6–13.  https://doi.org/10.1016/j.jviromet.2015.08.011 CrossRefGoogle Scholar
  181. Zhang R, Duan G, Shi Q, Chen S, Fan Q, Sun N et al (2016b) Construction of a recombinant Lactococcus lactis strain expressing a fusion protein of Omp22 and HpaA from Helicobacter pylori for oral vaccine development. Biotechnol Lett 38(11):1911–1916.  https://doi.org/10.1007/s10529-016-2173-5 CrossRefGoogle Scholar
  182. Zheng JP, Zhang ZS, Li SQ, Liu XX, Yuan SL, Wang P et al (2005) Construction of a novel Shigella live-vector strain co-expressing CS3 and LTB/STm of enterotoxigenic E.coli. World J Gastroenterol 11(22):3411–3418CrossRefGoogle Scholar
  183. Zheng Y-q, Naguib YW, Dong Y, Shi Y-c, Bou S, Cui Z (2015) Applications of bacillus Calmette-Guerin and recombinant bacillus Calmette-Guerin in vaccine development and tumor immunotherapy. Expert Rev Vaccines 14(9):1255–1275.  https://doi.org/10.1586/14760584.2015.1068124 CrossRefGoogle Scholar
  184. Zhou Z, Gong S, Yang Y, Guan R, Zhou S, Yao S et al (2015) Expression of Helicobacter pylori urease B on the surface of Bacillus subtilis spores. J Med Microbiol 64(1):104–110.  https://doi.org/10.1099/jmm.0.076430-0 CrossRefGoogle Scholar
  185. Zhu C, Ruiz-Perez F, Yang Z, Mao Y, Hackethal VL, Greco KM et al (2006) Delivery of heterologous protein antigens via hemolysin or autotransporter systems by an attenuated ler mutant of rabbit enteropathogenic Escherichia coli. Vaccine 24(18):3821–3831.  https://doi.org/10.1016/j.vaccine.2005.07.024 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Immunology and Microbial DiseasesAlbany Medical CenterAlbanyUSA

Personalised recommendations