Advertisement

Leveraging Heterogeneous Data for Fake News Detection

  • K. Anoop
  • Manjary P. Gangan
  • Deepak P
  • V. L. LajishEmail author
Chapter
Part of the Unsupervised and Semi-Supervised Learning book series (UNSESUL)

Abstract

Nowadays, a plenty of social media platforms are available to exchange information rapidly. Such a rapid propagation and cumulation of information form a deluge, in which it is hard to believe all the pieces of information since it appears to be very realistic. In this context, characterizing and recognizing misinformation, especially, fake news, is a highly recommended computational task. News fabrication mostly happens through the textual and visual content comprised in the news article. People spreading fake news have been intentionally modifying the content of a news with some partially true information or use fully manipulated information, newly fabricated stories, etc., which could mislead others. Fake news characterization and detection are the computational studies that focus to get rid of the highly malicious news creation and propagation. The textual and visual content-related features, temporal and propagation patterns of the network, that use traditional and deep neural computations are the methods to identify fake news generation and spread. This chapter discusses the methods to leverage heterogeneous data to curb the fake news generation and propagation. We present an extensive review of the state-of-the-art fake news detection systems, in the context of different modalities emphasizing the content-based approaches including text and image modality and also discuss briefly the network, temporal, and knowledge base approaches. This study also extends to discuss the available datasets in this area, the open issues, and future directions of research.

References

  1. 1.
    Palen, L., Anderson, K.M., Mark, G., Martin, J., Sicker, D., Palmer, M., Grunwald, D.: A vision for technology-mediated support for public participation & assistance in mass emergencies & disasters. In: Proceedings of the 2010 ACM-BCS Visions of Computer Science Conference, p. 8. British Computer Society, Swindon (2010)Google Scholar
  2. 2.
    Palen, L., Vieweg, S.: The emergence of online widescale interaction in unexpected events: assistance, alliance & retreat. In: Proceedings Conference on Computer Supported Cooperative Work, pp. 117–126. ACM, New York (2008)Google Scholar
  3. 3.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, pp. 851–860. ACM, New York (2010)Google Scholar
  4. 4.
    Sakaki, T., Toriumi, F., Matsuo, Y.: Tweet trend analysis in an emergency situation. In: Proceedings of the Special Workshop on Internet and Disasters, p. 3. ACM, New York (2011)Google Scholar
  5. 5.
    Cheong, F., Cheong, C.: Social media data mining: a social network analysis of tweets during the 2010–2011 Australian floods. In: Proceedings of PACIS, vol. 11, pp. 46–46 (2011)Google Scholar
  6. 6.
    Verma, S., Vieweg, S., Corvey, W.J., Palen, L., Martin, J.H., Palmer, M., Schram, A., Anderson, K.M.: Natural language processing to the rescue? extracting” situational awareness” tweets during mass emergency. In: Proceedings of ICWSM, Barcelona, pp. 385–392 (2011)Google Scholar
  7. 7.
    Vieweg, S., Hughes, A.L., Starbird, K., Palen, L.: Microblogging during two natural hazards events: what twitter may contribute to situational awareness. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1079–1088. ACM, New York (2010)Google Scholar
  8. 8.
    Søe, S.O.: Algorithmic detection of misinformation and disinformation: Gricean perspectives. J. Doc. 74(2), 309–332 (2018)CrossRefGoogle Scholar
  9. 9.
    Krishna Kumar, K.P., Geethakumari, G.: Detecting misinformation in online social networks using cognitive psychology. Human-Centric Comput. Inf. Sci. 4(1), 14 (2014)CrossRefGoogle Scholar
  10. 10.
    Tandoc, E.C. Jr., Lim, Z.W., Ling, R.: Defining fake news. Digit. Journalism 6(2), 137–153 (2018)CrossRefGoogle Scholar
  11. 11.
    Gelfert, A.: Fake news: a definition. Informal Logic 38(1), 84–117 (2018)CrossRefGoogle Scholar
  12. 12.
    Weir, W.: History’s greatest lies. Fair Winds, Beverly, MA (2009)Google Scholar
  13. 13.
  14. 14.
    Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking Sandy: characterizing and identifying fake images on twitter during Hurricane Sandy. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 729–736. ACM, New York (2013)Google Scholar
  17. 17.
    Mendoza, M., Poblete, B., Castillo, C.: Twitter under crisis: Can we trust what we RT? In: Proceedings of the First Workshop on Social Media Analytics, pp. 71–79. ACM, New York (2010)Google Scholar
  18. 18.
    Xiaochi, Z.: Internet rumors and intercultural ethics-a case study of panic-stricken rush for salt in China and iodine pill in America after Japanese earthquake and tsunami. Stud. Lit. Lang. 4(2), 13 (2012)Google Scholar
  19. 19.
    Rapoza, K.: Can fake news impact the stock market? Forbes, 26 February 2017Google Scholar
  20. 20.
    Fernández-Luque, L., Bau, T.: Health and social media: perfect storm of information. Healthcare Inf. Res. 21(2), 67–73 (2015)CrossRefGoogle Scholar
  21. 21.
    Marcon, A.R., Murdoch, B., Caulfield, T.: Fake news portrayals of stem cells and stem cell research. Regen. Med. 12(7), 765–775 (2017)CrossRefGoogle Scholar
  22. 22.
    Starbird, K., Maddock, J., Orand, M., Achterman, P., Mason, R.M.: Rumors, false flags, and digital vigilantes: misinformation on twitter after the 2013 Boston marathon bombing. In: iConference 2014 Proceedings (2014)Google Scholar
  23. 23.
    Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2), 211–236 (2017)CrossRefGoogle Scholar
  24. 24.
    Jin, Z., Cao, J., Guo, H., Zhang, Y., Wang, Y., Luo, J.: Rumor detection on twitter pertaining to the 2016 US presidential election (2017). Preprint, arXiv:1701.06250Google Scholar
  25. 25.
    Shin, J., Jian, L., Driscoll, K., Bar, F.: Political rumoring on twitter during the 2012 US presidential election: rumor diffusion and correction. New Media Soc. 19(8), 1214–1235 (2017)CrossRefGoogle Scholar
  26. 26.
    Wilson, J.: Playing with politics: political fans and twitter faking in post-broadcast democracy. Convergence 17(4), 445–461 (2011)CrossRefGoogle Scholar
  27. 27.
    Giglietto, F., Iannelli, L., Rossi, L., Valeriani, A.: Fakes, news and the election: a new taxonomy for the study of misleading information within the hybrid media system (2016)Google Scholar
  28. 28.
    Guess, A., Nyhan, B., Reifler, J.: Selective exposure to misinformation: evidence from the consumption of fake news during the 2016 US presidential campaign (2018)Google Scholar
  29. 29.
  30. 30.
  31. 31.
  32. 32.
  33. 33.
    Perez-Rosas, V., Kleinberg, B., Lefevre, A., Mihalcea, R.: Automatic detection of fake news (2017). Preprint, arXiv:1708.07104Google Scholar
  34. 34.
    Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., Stein, B.: A stylometric inquiry into hyperpartisan and fake news (2017). Preprint, arXiv:1702.05638Google Scholar
  35. 35.
    Newman, M.L., Pennebaker, J.W., Berry, D.S., Richards, J.M.: Lying words: predicting deception from linguistic styles. Personal. Soc. Psychol. Bull. 29(5), 665–675 (2003)CrossRefGoogle Scholar
  36. 36.
    Feng, S., Banerjee, R., Choi, Y.: Syntactic stylometry for deception detection. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pp. 171–175. Association for Computational Linguistics, Stroudsburg (2012)Google Scholar
  37. 37.
    Vlachos, A., Riedel, S.: Fact checking: task definition and dataset construction. In: Proceedings of the ACL Workshop on Language Technologies and Computational Social Science, pp. 18–22 (2014)Google Scholar
  38. 38.
    Wang, W.Y.: “Liar, liar pants on fire”: a new benchmark dataset for fake news detection (2017). Preprint, arXiv:1705.00648Google Scholar
  39. 39.
    Moschitti, A., Basili, R.: Complex linguistic features for text classification: a comprehensive study. In: European Conference on Information Retrieval, pp. 181–196. Springer, Berlin (2004)Google Scholar
  40. 40.
    Rubin, V., Conroy, N., Chen, Y., Cornwell, S.: Fake news or truth? Using satirical cues to detect potentially misleading news. In: Proceedings of the Second Workshop on Computational Approaches to Deception Detection, pp. 7–17 (2016)Google Scholar
  41. 41.
    Ott, M., Choi, Y., Cardie, C., Hancock, J.T.: Finding deceptive opinion spam by any stretch of the imagination. In: Proceedings of the 49th Annual Meeting: Human Language Technologies-Volume 1, pp. 309–319. ACL, Stroudsburg (2011)Google Scholar
  42. 42.
    Badaskar, S., Agarwal, S., Arora, S.: Identifying real or fake articles: towards better language modeling. In: Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-II (2008)Google Scholar
  43. 43.
    Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics (2003)Google Scholar
  44. 44.
    Toma, C.L., Hancock, J.T.: Reading between the lines: linguistic cues to deception in online dating profiles. In: Proceedings of the Conference on Computer Supported Cooperative Work, pp. 5–8. ACM, New York (2010)Google Scholar
  45. 45.
    Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count. Technical Report, Southern Methodist University, Dallas, TX (1993)Google Scholar
  46. 46.
    Ott, M., Cardie, C., Hancock, J.T.: Negative deceptive opinion spam. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 497–501 (2013)Google Scholar
  47. 47.
    Afroz, S., Brennan, M., Greenstadt, R.: Detecting hoaxes, frauds, and deception in writing style online. In: Symposium on Security and Privacy (SP), pp. 461–475. IEEE, Washington (2012)Google Scholar
  48. 48.
    Zheng, R., Li, J., Chen, H., Huang, Z.: A framework for authorship identification of online messages: Writing-style features and classification techniques. J. Assoc. Inf. Sci. Technol. 57(3), 378–393 (2006)CrossRefGoogle Scholar
  49. 49.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013). Preprint, arXiv:1301.3781Google Scholar
  50. 50.
    Goldberg, Y., Levy, O.: word2vec explained: deriving Mikolov et al.’s negative-sampling word-embedding method (2014). Preprint, arXiv:1402.3722Google Scholar
  51. 51.
    Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)Google Scholar
  52. 52.
    Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the EMNLP, pp. 1532–1543 (2014)Google Scholar
  53. 53.
    Bhatt, G., Sharma, A., Sharma, S., Nagpal, A., Raman, B., Mittal, A.: On the benefit of combining neural, statistical and external features for fake news identification (2017). Preprint, arXiv:1712.03935Google Scholar
  54. 54.
    Chopra, S., Jain, S., Sholar, J.M.: Towards automatic identification of fake news: headline-article stance detection with LSTM attention models (2017)Google Scholar
  55. 55.
    Ruchansky, N., Seo, S., Liu, Y.: Csi: a hybrid deep model for fake news detection. In: Proceedings of the Conference on Information and Knowledge Management, pp. 797–806. ACM, New York (2017)Google Scholar
  56. 56.
    Chaudhry, Ali K., Baker, D., Thun-Hohenstein, P.: Stance detection for the fake news challenge: identifying textual relationships with deep neural nets. https://web.stanford.edu/class/cs224n/reports/2760230.pdf
  57. 57.
    Singhania, S., Fernandez, N., Rao, S.: 3HAN: a deep neural network for fake news detection. In: International Conference on Neural Information Processing, pp. 572–581. Springer, Berlin (2017)CrossRefGoogle Scholar
  58. 58.
    Miller, K., Oswalt, A.: Fake news headline classification using neural networks with attention (2017)Google Scholar
  59. 59.
    Pfohl, S., Triebe, O., Legros, F.: Stance detection for the fake news challenge with attention and conditional encoding (2017)Google Scholar
  60. 60.
    Wu, L., Li, J., Hu, X., Liu, H.: Gleaning wisdom from the past: early detection of emerging rumors in social media. In: Proceedings of the International Conference on Data Mining, pp. 99–107. SIAM, Philadelphia (2017)CrossRefGoogle Scholar
  61. 61.
    Vuković, M., Pripužić, K., Belani, H.: An intelligent automatic hoax detection system. In: International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, pp. 318–325. Springer, Berlin (2009)CrossRefGoogle Scholar
  62. 62.
    Augenstein, I., Rocktäschel, T., Vlachos, A., Bontcheva, K.: Stance detection with bidirectional conditional encoding (2016). Preprint, arXiv:1606.05464Google Scholar
  63. 63.
    Burfoot, C., Baldwin, T.: Automatic satire detection: are you having a laugh? In: Proceedings of the IJCNLP Conference Short Papers, pp. 161–164. Association for Computational Linguistics, Stroudsburg (2009)Google Scholar
  64. 64.
    Mihalcea, R., Strapparava, C., Pulman, S.: Computational models for incongruity detection in humour. In: International Conference on Intelligent Text Processing and Computational Linguistics, pp. 364–374. Springer, Berlin (2010)CrossRefGoogle Scholar
  65. 65.
    Mihalcea, R., Pulman, S.: Characterizing humour: an exploration of features in humorous texts. In: International Conference on Intelligent Text Processing and Computational Linguistics, pp. 337–347. Springer, Berlin (2007)CrossRefGoogle Scholar
  66. 66.
    Reyes, A., Rosso, P.: On the difficulty of automatically detecting irony: beyond a simple case of negation. Knowl. Inf. Syst. 40(3), 595–614 (2014)CrossRefGoogle Scholar
  67. 67.
    Zhou, L., Burgoon, J.K., Nunamaker, J.F., Twitchell, D.: Automating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated communications. Group Decis. Negot. 13(1), 81–106 (2004)CrossRefGoogle Scholar
  68. 68.
    Mukherjee, A., Venkataraman, V., Liu, B., Glance, N.: Fake review detection: classification and analysis of real and pseudo reviews. Technical Report UIC-CS-2013–03, University of Illinois at Chicago (2013)Google Scholar
  69. 69.
    Meenakshi Sundaram, A., Nandini, C.: ASRD: algorithm for spliced region detection in digital image forensics. In: Computer Science On-line Conference, pp. 87–95. Springer, Berlin (2017)Google Scholar
  70. 70.
    Chen, W., Shi, Y.Q., Su, W.: Image splicing detection using 2-d phase congruency and statistical moments of characteristic function. In: Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, p. 65050R. International Society for Optics and Photonics, Leiden (2007)Google Scholar
  71. 71.
    He, Z., Sun, W., Lu, W., Lu, H.: Digital image splicing detection based on approximate run length. Pattern Recogn. Lett. 32(12), 1591–1597 (2011)CrossRefGoogle Scholar
  72. 72.
    Agarwal, S., Chand, S.: Image forgery detection using co-occurrence-based texture operator in frequency domain. In: Progress in Intelligent Computing Techniques: Theory, Practice, and Applications, pp. 117–122. Springer, Berlin (2018)Google Scholar
  73. 73.
    Abrahim, A.R., Rahim, M.S.M., Sulong, G.B.: Splicing image forgery identification based on artificial neural network approach and texture features. Clust. Comput. 1–14 (2018). https://doi.org/10.1007/s10586-017-1668-8
  74. 74.
    Dong, J., Wang, W., Tan, T., Shi, Y.Q.: Run-length and edge statistics based approach for image splicing detection. In: International Workshop on Digital Watermarking, pp. 76–87. Springer, Berlin (2008)CrossRefGoogle Scholar
  75. 75.
    Li, J., Li, X., Yang, B., Sun, X.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. 10(3), 507–518 (2015)CrossRefGoogle Scholar
  76. 76.
    Thirunavukkarasu, V., Satheesh Kumar, J., Chae, G.S., Kishorkumar, J.: Non-intrusive forensic detection method using DSWT with reduced feature set for copy-move image tampering. Wirel. Pers. Commun. 98(4), 3039–3057 (2018)CrossRefGoogle Scholar
  77. 77.
    Huang, Y., Lu, W., Sun, W., Long, D.: Improved DCT-based detection of copy-move forgery in images. Forensic Sci. Int. 206(1–3), 178–184 (2011)CrossRefGoogle Scholar
  78. 78.
    Mahmood, T., Mehmood, Z., Shah, M., Saba, T.: A robust technique for copy-move forgery detection and localization in digital images via stationary wavelet and discrete cosine transform. J. Vis. Commun. Image Represent. 53, 202–214 (2018)CrossRefGoogle Scholar
  79. 79.
    Al-Qershi, O.M., Khoo, B.E.: Comparison of matching methods for copy-move image forgery detection. In: 9th International Conference on Robotic, Vision, Signal Processing and Power Applications, pp. 209–218. Springer, Berlin (2017)Google Scholar
  80. 80.
    Sunil, K., Jagan, D., Shaktidev, M.: DCT-PCA based method for copy-move forgery detection. In: ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India-Vol II, pp. 577–583. Springer, Berlin (2014)Google Scholar
  81. 81.
    Bunk, J., Bappy, J.H., Mohammed, T.M., Nataraj, L., Flenner, A., Manjunath, B.S., Chandrasekaran, S., Roy-Chowdhury, A.K., Peterson, L.: Detection and localization of image forgeries using resampling features and deep learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1881–1889. IEEE, Washington (2017)Google Scholar
  82. 82.
    Flenner, A., Peterson, L., Bunk, J., Mohammed, T.M., Nataraj, L., Manjunath, B.S.: Resampling forgery detection using deep learning and a-contrario analysis (2018). Preprint, arXiv:1803.01711Google Scholar
  83. 83.
    Choi, H.-Y., Hyun, D.-K., Choi, S., Lee, H.-K.: Enhanced resampling detection based on image correlation of 3d stereoscopic images. EURASIP J. Image Video Process. 2017(1), 22 (2017)CrossRefGoogle Scholar
  84. 84.
    Peng, A., Wu, Y., Kang, X.: Revealing traces of image resampling and resampling antiforensics. Adv. Multimedia 2017 (2017). https://doi.org/10.1155/2017/7130491 CrossRefGoogle Scholar
  85. 85.
    Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting traces of resampling. IEEE Trans. Signal Process. 53(2), 758–767 (2005)MathSciNetCrossRefGoogle Scholar
  86. 86.
    Jin, Z., Cao, J., Zhang, Y., Zhou, J., Tian, Q.: Novel visual and statistical image features for microblogs news verification. IEEE Trans. Multimedia 19(3), 598–608 (2017)CrossRefGoogle Scholar
  87. 87.
    Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 675–684. ACM, New York (2011)Google Scholar
  88. 88.
    Kwon, S., Cha, M., Jung, K., Chen, W., Wang, Y.: Prominent features of rumor propagation in online social media. In: 2013 IEEE 13th International Conference on Data Mining (ICDM), pp. 1103–1108. IEEE, Washington (2013)Google Scholar
  89. 89.
    Wu, K., Yang, S., Zhu, K.Q.: False rumors detection on Sina Weibo by propagation structures. In: 2015 IEEE 31st International Conference on Data Engineering (ICDE), pp. 651–662. IEEE, Washington (2015)Google Scholar
  90. 90.
    Gupta, M., Zhao, P., Han, J.: Evaluating event credibility on twitter. In: Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 153–164. SIAM, Philadelphia (2012)CrossRefGoogle Scholar
  91. 91.
    Pasquini, C., Brunetta, C., Vinci, A.F., Conotter, V., Boato, G.: Towards the verification of image integrity in online news. In: 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE, Washington (2015)Google Scholar
  92. 92.
    Hossain, M.S., Alhamid, M.F., Muhammad, G.: Collaborative analysis model for trending images on social networks. Futur. Gener. Comput. Syst. 86, 855–862 (2017)CrossRefGoogle Scholar
  93. 93.
    Jin, Z., Cao, J., Luo, J., Zhang, Y.: Image credibility analysis with effective domain transferred deep networks (2016). Preprint, arXiv:1611.05328Google Scholar
  94. 94.
    Zhang, S., Tian, Q., Hua, G., Huang, Q., Li, S.: Descriptive visual words and visual phrases for image applications. In: Proceedings of the 17th ACM International Conference on Multimedia, pp. 75–84. ACM, New York (2009)Google Scholar
  95. 95.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  96. 96.
    Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.: Detecting image splicing in the wild (web). In: 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE, Washington (2015)Google Scholar
  97. 97.
    Lin, Z., He, J., Tang, X., Tang, C.-K.: Fast, automatic and fine-grained tampered jpeg image detection via DCT coefficient analysis. Pattern Recogn. 42(11), 2492–2501 (2009)CrossRefGoogle Scholar
  98. 98.
    Bianchi, T., De Rosa, A., Piva, A.: Improved DCT coefficient analysis for forgery localization in JPEG images. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2444–2447. IEEE, Washington (2011)Google Scholar
  99. 99.
    Ferrara, P., Bianchi, T., De Rosa, A., Piva, A.: Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Trans. Inf. Forensics Secur. 7(5), 1566–1577 (2012)CrossRefGoogle Scholar
  100. 100.
    Bianchi, T., Piva, A.: Image forgery localization via block-grained analysis of JPEG artifacts. IEEE Trans. Inf. Forensics Secur. 7(3), 1003–1017 (2012)CrossRefGoogle Scholar
  101. 101.
    Mahdian, B., Saic, S.: Using noise inconsistencies for blind image forensics. Image Vis. Comput. 27(10), 1497–1503 (2009)CrossRefGoogle Scholar
  102. 102.
    Hsu, Y.-F., Chang, S.-F.: Detecting image splicing using geometry invariants and camera characteristics consistency. In: 2006 IEEE International Conference on Multimedia and Expo, pp. 549–552. IEEE, Washington (2006)Google Scholar
  103. 103.
    Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data mining perspective. ACM SIGKDD Explor. Newsl. 19(1), 22–36 (2017)CrossRefGoogle Scholar
  104. 104.
    Conroy, N.J., Rubin, V.L., Chen, Y.: Automatic deception detection: methods for finding fake news. Proc. Assoc. Inf. Sci. Technol. 52(1), 1–4 (2015)CrossRefGoogle Scholar
  105. 105.
    Kwon, S., Cha, M., Jung, K.: Rumor detection over varying time windows. PloS ONE 12(1), e0168344 (2017)CrossRefGoogle Scholar
  106. 106.
    Matsubara, Y., Sakurai, Y., Aditya Prakash, B., Li, L., Faloutsos, C.: Rise and fall patterns of information diffusion: model and implications. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 6–14. ACM, New York (2012)Google Scholar
  107. 107.
  108. 108.
    Evon, D.: https://www.snopes.com/fact-check/mysterious-creature-terrorizing-argentina/?utm_source=socialflow&utm_medium=social. April 2018
  109. 109.
  110. 110.
  111. 111.
    Brandtzaeg, P.B., Følstad, A.: Trust and distrust in online fact-checking services. Commun. ACM 60(9), 65–71 (2017)CrossRefGoogle Scholar
  112. 112.
    Guha, S.: Related fact checks: a tool for combating fake news (2017). Preprint, arXiv:1711.00715Google Scholar
  113. 113.
    Shao, C., Ciampaglia, G.L., Flammini, A., Menczer, F.: Hoaxy: a platform for tracking online misinformation. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 745–750. International World Wide Web Conferences Steering Committee (2016)Google Scholar
  114. 114.
  115. 115.
    Tschiatschek, S., Singla, A., Rodriguez, M.G., Merchant, A., Krause, A.: Detecting fake news in social networks via crowdsourcing (2017). Preprint, arXiv:1711.09025Google Scholar
  116. 116.
    Kim, J., Tabibian, B., Oh, A., Schölkopf, B., Gomez-Rodriguez, M.: Leveraging the crowd to detect and reduce the spread of fake news and misinformation. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 324–332. ACM, New York (2018)Google Scholar
  117. 117.
    Ciampaglia, G.L., Shiralkar, P., Rocha, L.M., Bollen, J., Menczer, F., Flammini, A.: Computational fact checking from knowledge networks. PloS ONE 10(6), e0128193 (2015)CrossRefGoogle Scholar
  118. 118.
    Wu, Y., Agarwal, P.K., Li, C., Yang, J., Yu, C.: Toward computational fact-checking. Proc. VLDB Endowment 7(7), 589–600 (2014)CrossRefGoogle Scholar
  119. 119.
    Magdy, A., Wanas, N.: Web-based statistical fact checking of textual documents. In: Proceedings of the 2nd International Workshop on Search and Mining User-Generated Contents, pp. 103–110. ACM, New York (2010)Google Scholar
  120. 120.
    Jin, F., Dougherty, E., Saraf, P., Cao, Y., Ramakrishnan, N.: Epidemiological modeling of news and rumors on twitter. In: Proceedings of the 7th Workshop on Social Network Mining and Analysis, p. 8. ACM, New York (2013)Google Scholar
  121. 121.
    Tambuscio, M., Ruffo, G., Flammini, A., Menczer, F.: Fact-checking effect on viral hoaxes: a model of misinformation spread in social networks. In: Proceedings of the 24th International Conference on World Wide Web, pp. 977–982. ACM, New York (2015)Google Scholar
  122. 122.
    Nguyen, N.P., Yan, G., Thai, M.T., Eidenbenz, S.: Containment of misinformation spread in online social networks. In: Proceedings of the 4th Annual ACM Web Science Conference, pp. 213–222. ACM, New York (2012)Google Scholar
  123. 123.
    Mitra, T., Gilbert, E.: Credbank: a large-scale social media corpus with associated credibility annotations. In: ICWSM, pp. 258–267 (2015)Google Scholar
  124. 124.
    De Domenico, M., Lima, A., Mougel, P., Musolesi, M.: The anatomy of a scientific rumor. Sci. Rep. 3, 2980 (2013)CrossRefGoogle Scholar
  125. 125.
    Hsu, Y.-F., Chang, S.-F.: Detecting image splicing using geometry invariants and camera characteristics consistency. In: International Conference on Multimedia and Expo (2006)Google Scholar
  126. 126.
    Zarrella, G., Marsh, A.: Mitre at semeval-2016 task 6: transfer learning for stance detection (2016). Preprint, arXiv:1606.03784Google Scholar
  127. 127.
    Mohammad, S., Kiritchenko, S., Sobhani, P., Zhu, X., Cherry, C.: Semeval-2016 task 6: detecting stance in tweets. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 31–41 (2016)Google Scholar
  128. 128.
    Zubiaga, A., Aker, A., Bontcheva, K., Liakata, M., Procter, R.: Detection and resolution of rumours in social media: a survey (2017). Preprint, arXiv:1704.00656Google Scholar
  129. 129.
    Li, Y., Gao, J., Meng, C., Li, Q., Su, L., Zhao, B., Fan, W., Han, J.: A survey on truth discovery. ACM Sigkdd Explor. Newsl. 17(2), 1–16 (2016)CrossRefGoogle Scholar
  130. 130.
    Potthast, M., Köpsel, S., Stein, B., Hagen, M.: Clickbait detection. In: European Conference on Information Retrieval, pp. 810–817. Springer, Berlin (2016)Google Scholar
  131. 131.
    Hu, X., Tang, J., Zhang, Y., Liu, H.: Social spammer detection in microblogging. In: Proceedings of IJCAI, vol. 13, pp. 2633–2639 (2013)Google Scholar
  132. 132.
    Chen, Y., Conroy, N.J., Rubin, V.L.: Misleading online content: recognizing clickbait as false news. In: Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection, pp. 15–19. ACM, New York (2015)Google Scholar
  133. 133.
    Ferrara, E., Varol, O., Davis, C., Menczer, F., Flammini, A.: The rise of social bots. Commun. ACM 59(7), 96–104 (2016)CrossRefGoogle Scholar
  134. 134.
    Opitz, D.W., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)CrossRefGoogle Scholar
  135. 135.
    Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006)CrossRefGoogle Scholar
  136. 136.
    Li, X., Rao, Y., Xie, H., Lau, R.Y.K., Yin, J., Wang, F.L.: Bootstrapping social emotion classification with semantically rich hybrid neural networks. IEEE Trans. Affect. Comput. 8(4), 428–442 (2017)CrossRefGoogle Scholar
  137. 137.
    Liao, L., He, X., Zhang, H., Chua, T.-S.: Attributed social network embedding (2017). Preprint, arXiv:1705.04969Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • K. Anoop
    • 1
  • Manjary P. Gangan
    • 1
  • Deepak P
    • 2
  • V. L. Lajish
    • 1
    Email author
  1. 1.Department of Computer ScienceUniversity of CalicutMalappuramIndia
  2. 2.Queen’s University BelfastBelfastUK

Personalised recommendations