Advertisement

Sensorless Force Estimator in Rehabilitation Robotics

  • Demy KremersEmail author
  • Justin Fong
  • Vincent Crocher
  • Ying Tan
  • Denny Oetomo
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 21)

Abstract

Measuring the force exerted by patients in the exercise for rehabilitation after neurological injuries is important: in quantifying the patient’s motion capabilities, to ensure safety and to provide the appropriate amount of assistance, among others. Adding a force sensor for this purpose at the end-effector of a rehabilitation robot can add considerable cost. When a robotic device is dynamically transparent and mechanically backdrivable, a force estimator based on the model of the system can be used to estimate the force applied by the patient without using the explicit force sensor. This work validates the effectiveness of a model-based force estimator, derived from the literature, within the context of rehabilitation robotics, through a successful validation the strategy on the EMU upper-limb rehabilitation robot.

References

  1. 1.
    Alcocer, A., Robertsson, A., Valera, A., Johansson, R.: Force estimation and control in robot manipulators. IFAC Proc. Vol. 36(17), 55–60 (2003)CrossRefGoogle Scholar
  2. 2.
    Crocher, V., Fong, J., Bosch, T., Tan, Y., Mareels, I., Oetomo, D.: Upper limb deweighting using underactuated end-effector based backdrivable manipulanda. IEEE Robot. Autom. Lett. 3, 2116–2122 (2018)CrossRefGoogle Scholar
  3. 3.
    Fong, J., Crocher, V., Tan, Y., Oetomo, D., Mareels, I.: EMU: a transparent 3D robotic manipulandum for upper-limb rehabilitation. In: IEEE International Conference on Rehabilitation Robotics, pp. 771–776 (2017)Google Scholar
  4. 4.
    Hacksel, P.J. Salcudean, S.E.: Estimation of environment forces and rigid-body velocities using observers. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 931–936 (1994)Google Scholar
  5. 5.
    Marchal-Crespo, L., Reinkensmeyer, D.J.: Review of control strategies for robotic movement training after neurologic injury. J. NeuroEng. Rehabil. 6(1), 20 (2009)CrossRefGoogle Scholar
  6. 6.
    Meng, W., Liu, Q., Zhou, Z., Ai, Q., Sheng, B., Xie, S.: Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 31, 31:132–31:145 (2015)CrossRefGoogle Scholar
  7. 7.
    Pehlivan, A.U., Losey, D.P., O’Malley, M.K.: Minimal assist-as-needed controller for upper limb robotic rehabilitation. IEEE Trans. Robot. 32(1), 113–124 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Demy Kremers
    • 1
    Email author
  • Justin Fong
    • 1
  • Vincent Crocher
    • 1
  • Ying Tan
    • 1
  • Denny Oetomo
    • 1
  1. 1.Melbourne School of EngineeringThe University of MelbourneParkvilleAustralia

Personalised recommendations