Advertisement

On Continuous User Authentication via Hidden Free-Text Based Monitoring

  • Elena Kochegurova
  • Elena Luneva
  • Ekaterina Gorokhova
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 875)

Abstract

This paper investigates the stages and specific features of continuous user authentication by hidden monitoring of keystroke dynamics when creating a free text. The stages include extraction of informative characteristics of keyboard rhythm, creation and update of user profiles and identification of efficiency criteria. A software application was developed for the project. The authors further analyzed existing algorithms for user identification based in metric distances. Previously proved features of keystroke dynamics were scaled with regard to frequency of use of Russian and English letters in free texts.

Keywords

Keystroke dynamics Continuous authentication Behavioral biometrics Feature selection Classification 

Notes

Acknowledgment

The reported study was funded by RFBR according to the research project № 18-07-01007.

References

  1. 1.
    Yampolskiy, R.V., Govindaraju, V.: Behavioural biometrics: a survey and classification. Int. J. Biom. 1(1), 81–113 (2008)CrossRefGoogle Scholar
  2. 2.
    Pisani, P.H., Lorena, A.C.: Emphasizing typing signature in keystroke dynamics using immune algorithms. Appl. Soft Comput. 34, 178–193 (2015)CrossRefGoogle Scholar
  3. 3.
    Peacock, A., Ke, X., Wilkerson, M.: Typing patterns: a key to user identification. IEEE Secur. Priv. 2(5), 40–47 (2004)CrossRefGoogle Scholar
  4. 4.
    Shanmugapriya, D., Padmavathi, G.: A survey of biometric keystroke dynamics: approaches, security and challenges. Int. J. Comput. Sci. Inf. Secur. 5(1), 115–119 (2009)Google Scholar
  5. 5.
    Banerjee, S.P., Woodard, D.L.: Biometric authentication and identification using keystroke dynamics: a survey. J. Pattern Recognit. Res. 7(1), 116–139 (2012)CrossRefGoogle Scholar
  6. 6.
    Karnan, M., Akila, M., Krishnaraj, N.: Biometric personal authentication using keystroke dynamics: a review. Appl. Soft Comput. 11(2), 1565–1573 (2011)CrossRefGoogle Scholar
  7. 7.
    Teh, P.S., Teoh, A.B.J., Yue, S.: A survey of keystroke dynamics biometrics. Sci. World J. 2013, 1–24 (2013)CrossRefGoogle Scholar
  8. 8.
    Pisani, P.H., Lorena, A.C.: A systematic review on keystroke dynamics. J. Braz. Comput. Soc. 19(4), 573–587 (2013)CrossRefGoogle Scholar
  9. 9.
    Mondal, S., Bours, P.: A study on continuous authentication using a combination of keystroke and mouse biometrics. Neurocomputing 230, 1–22 (2016)CrossRefGoogle Scholar
  10. 10.
    Vasiliev, V.I., Lozhnikov, P.S., Sulavko, A.E., Eremenko, A.V.: Hidden biometric identification technologies of users of computer systems (review). Inf. Secur. Issues 3(110), 37–47 (2015)Google Scholar
  11. 11.
    Teh, P.S., Zhang, N., Teoh, A.B., Chen, K.: A survey on touch dynamics authentication in mobile devices review article. Comput. Secur. 59, 210–235 (2016)CrossRefGoogle Scholar
  12. 12.
    Mahfouz, A., Mahmoud, T.M., Eldin, A.S.: A survey on behavioral biometric authentication on smartphones. Res. Artic. J. Inf. Secur. Appl. 37, 28–37 (2017)Google Scholar
  13. 13.
    Pentel, A.: Predicting age and gender by keystroke dynamics and mouse patterns. In: Proceedings of UMAP 2017 Adjunct, Publication of the 25th Conference on User Modeling, Adaptation and Personalization, pp. 381–385 (2017)Google Scholar
  14. 14.
    Lozhnikov, P., Sulavko, A., Buraya, E., Pisarenko, V.: Authentication of computer users in real-time by generating bit sequences based on keyboard handwriting and face features. Cybersecur. Issues 3(21), 24–34 (2017)CrossRefGoogle Scholar
  15. 15.
    Kim, J., Kim, H., Kang, P.: Keystroke dynamics-based user authentication using freely typed text based on user-adaptive feature extraction and novelty detection. Appl. Soft Comput. 62, 1077–1087 (2018)CrossRefGoogle Scholar
  16. 16.
    Morales, A., Fierrez, J., Tolosana, R., Ortega-Garcia, J., Galbally, J., Gomez-Barrero, M., et al.: KBOC: keystroke biometrics ongoing competition. In: Proceedings 8th IEEE International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–6 (2016)Google Scholar
  17. 17.
    Kochegurova, E.A., Gorokhova, E.S., Mozgaleva, A.I.: Development of the keystroke dynamics recognition system. J. Phys.: Conf. Ser. 803(1), 1–7 (2017)Google Scholar
  18. 18.
    Alpar, O.: Frequency spectrograms for biometric keystroke authentication using neural network based classifier. Knowl.-Based Syst. 116, 163–171 (2017)CrossRefGoogle Scholar
  19. 19.
    Goodkind, A., Brizan, D.G., Rosenberg, A.: Utilizing overt and latent linguistic structure to improve keystroke-based authentication. Image Vis. Comput. 58, 230–238 (2017)CrossRefGoogle Scholar
  20. 20.
    Alsultan, A., Warwick, K.: Keystroke dynamics authentication: a survey of free-text methods. Int. J. Comput. Sci. Issues 10(4), 1–10 (2013)Google Scholar
  21. 21.
    Ali, M.L., Monaco, J.V., Tappert, C.C., Qiu, M.: Keystroke biometric systems for user authentication. J. Signal Process. Syst. 86, 175–190 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elena Kochegurova
    • 1
  • Elena Luneva
    • 1
  • Ekaterina Gorokhova
    • 1
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations