Hybrid Intelligent Multi-agent System Model for Solving Complex Transport-Logistic Problem

  • Sergey ListopadEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 875)


On the example of a complex transport-logistic problem, computer modeling of problem solving by expert team using one of the divergent thinking techniques namely the brain record pool is considered. Computer modeling of problem solving in a team allows applying a set of dynamically synthesized and modifiable integrated models for a variety of problem solving situations rather than a single tool. The results of a comparison of the probability and magnitude of the synergy effect in hybrid multi-agent intelligent systems with different architectures made it possible to develop rules for a fuzzy knowledge base for selecting an architecture corresponding to different problems.


Hybrid intelligent multi-agent system Divergent thinking Complex transport-logistic problem 


  1. 1.
    Kolesnikov, A.V., Kirikov, I.A., Listopad, S.V., Rumovskaya, S.B., Domanitskiy, A.A.: Reshenie slozhnykh zadach kommivoyazhera metodami funktsional’nykh gibridnykh intellektual’nykh system [Complex travelling salesman problems solving by the methods of the functional hybrid intelligent systems]. IPI RAN, Moscow (2011). (In Russian)Google Scholar
  2. 2.
    Kolesnikov, A.V.: Gibridnye intellektual’nye sistemy. Teoriya i tekhnologiya razrabotki [Hybrid intelligent systems: theory and technology of development]. SPbGTU Publs., Saint Petersburg (2001). (In Russian)Google Scholar
  3. 3.
    Tarasov, V.B.: Ot mnogoagentnykh sistem k intellektualnym organizatsiyam: filosofiya, psikhologiya, informatika [From multiagent systems to intelligent organizations: philosophy, psychology, and informatics]. Editorial URSS, Moscow (2002). (In Russian)Google Scholar
  4. 4.
    Samsonova, M.V., Efimov, V.V.: Tekhnologiya i metody kollektivnogo resheniya problem: Ucheb. posobie [Technology and methods of group decision. Handbook]. UlSTU, Ulyanovsk (2003). (In Russian)Google Scholar
  5. 5.
    Zankovskiy, A.N.: Organizatsionnaya psikhologiya [Organizational psychology]. Flinta: MPSI, Moscow (2002). (In Russian)Google Scholar
  6. 6.
    Latfullin, G.R., Gromova, O.N. (eds.): Organizatsionnoye povedeniye [Organizational Behavior] Piter Publishing House, Saint Petersburg (2004). (In Russian)Google Scholar
  7. 7.
    Kaner, S.: Facilitator’s Guide to Participatory Decision-Making, 2nd edn. Jossey-Bass, San Francisco (2007)Google Scholar
  8. 8.
    De Bono, E.: Parallel Thinking: From Socratic to De Bono Thinking. Penguin Books, London (1994)Google Scholar
  9. 9.
    Kirikov, I.A., Kolesnikov, A.V., Listopad, S.V.: Komp’yuternaya model’ sinergii kollektivnogo prinyatiya resheniy [Computer model of synergy of team decision-making]. Inf. Appl. 11(3), 34–41 (2017). (In Russian)Google Scholar
  10. 10.
    Zimnyaya, I.A.: Pedagogicheskaya psikhologiya [Pedagogical psychology]. Rostov-on-Don, Phoenix (1997). (In Russian)Google Scholar
  11. 11.
    Kirikov, I.A., Kolesnikov, A.V., Listopad, S.V., Rumovskaya, S.B.: Metod izmereniya effekta sinergii v gibridnykh intellektual’nykh mnogoagentnykh sistemakh [Method for measuring synergy effect in hybrid intelligent multiagent systems]. Syst. Means Inf. 27(3), 99–111 (2017). (In Russian)Google Scholar
  12. 12.
    Johnson, D.W., Maruyama, G., Johnson, R., Nelson, D., Skon, L.: Effects of cooperative, competitive, and individualistic goal structure on achievement: a meta-analysis. Psychol. Bull. 89, 47–62 (1981)CrossRefGoogle Scholar
  13. 13.
    Kolesnikov, A.V., Kirikov, I.A., Listopad, S.V.: Gibridnye intellektual’nye sistemy s samoorganizatsiey: koordinatsiya, soglasovannost’, spor [Hybrid intelligent systems with self-organization: coordination, consistency, dispute]. IPI RAN, Moscow (2014). (In Russian)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Kaliningrad Branch of the Federal Research Center “Computer Science and Control” of the Russian Academy of SciencesKaliningradRussian Federation

Personalised recommendations