Advertisement

The Application of MATLAB for the Primary Processing of Seismic Event Data

  • Anatoly Korobeynikov
  • Vladimir Polyakov
  • Antonina Komarova
  • Alexander Menshchikov
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 875)

Abstract

This paper discusses the use of wavelets for the preprocessing of data from seismic observation stations. The authors analyze the application of wavelets for seismic event data processing, discuss natural disasters prediction trends and make a decision about importance of performing additional seismic data analysis. We provide a new approach of seismic event preprocessing based on different methods combination and MATLAB usage. This approach can be used during educational process in the fields of digital data processing, wavelet analysis, natural disasters research and MATLAB study.

Keywords

MATLAB Wavelets Earthquake Digital data processing Seismic event 

References

  1. 1.
    Korobeynikov, A.G.: Development and analysis of mathematical models using MATLAB and MAPLE – St. Petersburg: St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 144 pp. (2010). https://elibrary.ru/item.asp?id=26121333
  2. 2.
    Korobeynikov, A.G.: Designing and researching mathematical models in MATLAB and Maple environments. – SPb: SPbSU ITMO, 160 p. (2012). https://elibrary.ru/item.asp?id=26120684
  3. 3.
    Korobeynikov, A.G., Grishentcev, A.Yu.: Development and research of multidimensional mathematical models using computer algebra systems. – SPb: NIU ITMO, 100 p. (2014). https://elibrary.ru/download/elibrary_26121279_54604165.pdf
  4. 4.
    Velichko, E.N., Grishentsev, A., Korikov, C., Korobeynikov, A.G.: On interoperability in distributed geoinformational systems. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9247, pp. 496–504 (2015)Google Scholar
  5. 5.
    Grishentcev, A.U., Korobeynikov, A.G.: Interoperability tools in distributed geoinformation systems. J. Radio Electron. (3), 19 (2015). http://jre.cplire.ru/jre/mar15/7/text.pdf
  6. 6.
    Tung, K.K.: Topics in Mathematical Modeling. Princeton University Press, Princeton (2007). van de Koppel, J., Huisman, J., van der Wal, R., Olff, H.: Patterns of herbivory along a prouductivity gradient: an empirical and theoretical investigation. Ecology 77(3), 736–745Google Scholar
  7. 7.
    Pianosi, F., Sarrazin, F., Wagener, T.: A Matlab toolbox for global sensitivity analysis. Environ. Model. Softw. 70, 80–85 (2015)CrossRefGoogle Scholar
  8. 8.
    Korobeinikov, A.G., Ismagilov, V.S., Kopytenko, Yu.A., Petrishchev, M.S.: The study of the geoelectric structure of the crust on the basis of the analysis of the phase velocities of ultra geomagnetic variations. Cybernet. Programm. (2), 36–43 (2013).  https://doi.org/10.7256/2306-4196.2013.2.8736. http://e-notabene.ru/kp/article_8736.html
  9. 9.
    Korobeinikov, A.G., Ismagilov, V.S., Kopytenko, Yu.A., Petrishchev, M.S.: Processing of experimental studies of the Earth crust geoelectric structure based on the analysis of the phase velocities of extra-low-frequency geomagnetic variations. Softw. Syst. Comput. Methods (3), 295–300 (2013).  https://doi.org/10.7256/2305-6061.2013.3.10381
  10. 10.
    Korobeynikov, A.G., Fedosovsky, M.E., Zharinov, I.O., Polyakov, V.I., Shukalov, A.V., Gurjanov, A.V., Arustamov, S.A.: Method for conceptual presentation of subject tasks in knowledge engineering for computer-aided design systems. In: Proceedings of the Second International Scientific Conference “Intelligent Information Technologies for Industry” (IITI 2017), vol. 2, pp. 50–56 (2017). https://link.springer.com/chapter/10.1007/978-3-319-68324-9_6Google Scholar
  11. 11.
    Korobeynikov, A.G., Fedosovsky, M.E., Gurjanov, A.V., Zharinov, I.O., Shukalov, A.V.: Development of conceptual modeling method to solve the tasks of computer-aided design of difficult technical complexes on the basis of category theory. Int. J. Appl. Eng. Res. 12(6), 1114–1122 (2017). ISSN 0973-4562. http://www.ripublication.com/ijaer17/ijaerv12n6_46.pdf
  12. 12.
    Velichko, E.N., Korikov, C., Korobeynikov, A.G., Grishentsev, A.Y., Fedosovsky, M.E.: Information risk analysis for logistics systems. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9870, pp. 776–785 (2016)Google Scholar
  13. 13.
    Wang, Z.: Application of Matlab in the university mathematical experiment course. Comput. Digit. Eng. (2013)Google Scholar
  14. 14.
    Biao, W.: Brief analysis on application of Matlab in higher mathematics teaching. Comput. Digit. Eng. (2013)Google Scholar
  15. 15.
    Velichko, E.N., Grishentsev, A.Y., Korobeynikov, A.G.: Inverse problem of radiofrequency sounding of ionosphere. Int. J. Mod. Phys. A 31(2–3) (2016). ISSN0217-751X. http://www.worldscientific.com/doi/abs/10.1142/S0217751X16410335
  16. 16.
    Korobeynikov, A.G., Aleksanin, S.A., Perezyabov, O.A.: Automated image processing using magnetic defectoscopy. ARPN J. Eng. Appl. Sci. 10(17), 7488–7493 (2015). ISSN 1819-6608. http://www.arpnjournals.com/jeas/research_papers/rp_2015/jeas_0915_2586.pdf
  17. 17.
    Xanthakis, J.: Possible periodicities of the annual released global seismic energy (M > 7.9) during the period 198-1971. Tectonophysics. 81(1–2), T7–T14 (1982)CrossRefGoogle Scholar
  18. 18.
    Ashit, K.D.: Earthquake prediction using artificial neural networks. Int. J. Res. Rev. Comput. Sci. (IJRRCS) 2(6), 2079–2557 (2011)Google Scholar
  19. 19.
    Moustra, M., Avraamides, M., Christodou1ou, C.: Artificial neural network for earthquake prediction using time series magnitude data or seismic electric signals Expert Syst. Appl. 38(12), 15032–15039 (2011)Google Scholar
  20. 20.
    Wang, Y., Chen, Y., Zhang, J.: The application of RBF neural network in earthquake prediction. In: Third International Conference on Genetic and Evolutionary Computing, pp. 465–468 (2009)Google Scholar
  21. 21.
    Panakkat, A., Adeli, H.: Neural Network model for earthquake magnitude prediction using multiple seismicity indicator. Int. J. Syst. 17(1), 13–33 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anatoly Korobeynikov
    • 1
    • 2
  • Vladimir Polyakov
    • 2
  • Antonina Komarova
    • 2
  • Alexander Menshchikov
    • 2
  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences St.-Petersburg FilialMoscowRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations