Advertisement

External Consistency Maintenance Algorithm for Chain and Stellate Structures of Algebraic Bayesian Networks: Statistical Experiments for Running Time Analysis

  • Nikita Kharitonov
  • Ekaterina Malchevskaia
  • Andrey Zolotin
  • Maksim Abramov
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 875)

Abstract

This article describes an experiment demonstrating the running time of the algorithm for maintainance of external consistency in algebraic Bayesian networks. In the experiment, the stellate and chain structures of algebraic Bayesian networks are compared. The results of the experiment demonstrate the dependency of the algorithm complexity on the number of atoms in the network, as well as on the intersections and in the fragments of knowledge.

Keywords

Probabilistic graphical models Algebraic bayesian networks Knowledge patterns Global probabilistic-logic inference Maintenance of external consistency Statistical experiments 

Notes

Acknowledgments

The research was carried out in the framework of the project on state assignment SPIIRAS No. 0073-2018-0001, with the financial support of the RFBR (project № 18-01-00626; project № 18-37-00323).

References

  1. 1.
    Abramov, M.V., Azarov, A.A.: Social engineering attack modeling with the use of Bayesian networks. In: 2016 XIX IEEE International Conference on IEEE Soft Computing and Measurements (SCM), pp. 58–60 (2016)Google Scholar
  2. 2.
    Abramov, M.V., Azarov, A.A.: Social engineering attack modeling with the use of Bayesian networks. Collection of reports of the International Conference on Soft Computing and Measurement (SCM-2016), vol. 1-2. T. 1, St. Petersburg, pp. 71–74 (2016)Google Scholar
  3. 3.
    Herrera-Vega, J., Orihuela-Espina, F., Ibarguengoytia, P.H., Garcia, U.A., Morales, E.F., Sucar, L.E.: A local multiscale probabilistic graphical model for data validation and reconstruction, and its application in industry. Eng. Appl. Artif. Intell. 70, 1–15 (2018)CrossRefGoogle Scholar
  4. 4.
    Jiang, J., Xie, J., Zhao, C., Su, J., Guan, Y., Yu, Q.: Max-margin weight learning for medical knowledge network. Comput. Methods Prog. Biomed. 156, 179–190 (2018)CrossRefGoogle Scholar
  5. 5.
    Kharitonov, N.A., Zolotin, A.A., Tulupyev, A.L.: Software implementation of algebraic Bayesian networks consistency algorithms. In: 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), 24–26 May 2017, pp. 8–10 (2017)Google Scholar
  6. 6.
    Tulupyev, A.L., Nikolenko, S.I., Sirotkin, A.V.: Bayesian networks: a probabilistic-logic approach. SPb.: Nauka, p. 607 (2006). (in Russian)Google Scholar
  7. 7.
    Tulupyev, A.L., Sirotkin, A.V., Nikolenko, S.I.: Bayesian belief networks. SPb.: SPbSU Press, p. 400 (2009). (in Russian)Google Scholar
  8. 8.
    Tulupyev, A.L., Stolyarov, D.M., Mentyukov, M.V.: A representation for local and global structures of an algebraical Bayesian network in java applications. Tr SPIIRAN 5, 71–99 (2007). (in Russian)Google Scholar
  9. 9.
    Tulupyev, A.L., Tulupyeva, T.V., Suvorova, A.V., Abramov, M.V., Zolotin, A.A., Zotov, M.A., Azarov, A.A., Malchevskaya, E.A., Levenets, D., Toropova, A.V., Kharitonov, N.A., Birillo, A.I., Solntsev, R.I., Mikoni, S.V., Orlov, S.P., Tolstov, A.V.: Soft calculations and measurements. Models and methods: monograph. In: Prokopchina, S.V. (ed.), vol. III, Moscow, ID. “SCIENTIFIC LIBRARY”, p. 300 (2017)Google Scholar
  10. 10.
    Xing, F.W., Chen, J.L., Zhao, B.L., Jiang, J.Z., Tang, A.L., Chen, Y.L.: Real role of beta-blockers in regression of left ventricular mass in hypertension patients Bayesian network meta-analysis. Medicine 96(10), e6290 (2017)CrossRefGoogle Scholar
  11. 11.
    Zolotin, A.A., Levenets, D.G., Malchevskaya, E.A., Zotov, M.A., Birillo, A.I., Berezin, A.I., Ivanova, A.V., Tulupyev, A.L.: Algorithms for processing and visualization of algebraic Bayesian networks. Educ. Tech. Soc. 1, 446–457 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nikita Kharitonov
    • 1
  • Ekaterina Malchevskaia
    • 1
  • Andrey Zolotin
    • 1
  • Maksim Abramov
    • 1
    • 2
  1. 1.St. Petersburg Institute for Informatics and Automation of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations