Intelligent Support of Grain Harvester Technological Adjustment in the Field

  • Valery DimitrovEmail author
  • Lyudmila Borisova
  • Inna Nurutdinova
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 875)


The problems of creating intelligent systems for information support in making decisions on preliminary technological adjustment of complex harvesting machines functioning in the field are considered. The solution of the problem for a combine harvester being a universal machine for harvesting grain, leguminous and other cultivated crops is presented. A combine harvester is considered as a complex mechatronic system that functions in a changing environment. Different types of uncertainty in the consideration of the semantic spaces of environmental factors and adjustable machine parameters cause the application of the logical-linguistic approach and the mathematical apparatus of fuzzy logic to find the optimal initial values of the adjustable parameters. The models of studied semantic spaces have been built. An expert knowledge base has been created, quantitative assessments of the consistency of expert information have been obtained. On the basis of the system of production rules, further fuzzy inference of solutions in the task of preliminary technological adjustment has been carried out. The proposed formal logical scheme of the decision-making process is applied to the selection of the values of the most important adjustable parameters of the combine, such as the speed, the rotational speed of the threshing drum, rotor speed of a separator fan.


Intelligent system Technological adjustment Grain combine harvester Expert knowledge Membership function Linguistic variable Fuzzification Defuzzification Fuzzy inference 


  1. 1.
    Rybalko, A.G.: Osobennosti uborki visokourojainih zernovih kultur (Some features of harvesting high-yield crops). Agropromizdat, Moscow (1988). (in Russian)Google Scholar
  2. 2.
    Borisova, L., Dimitrov, V., Nurutdinova, I.: Intelligent system for technological adjustment of the harvesting machines parameters. Adv. Intell. Syst. Comput. 680, 95–105 (2018)Google Scholar
  3. 3.
    Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A., Samani, B.H.: Design, development and performance evaluation of an automatic control system for rice whitening machine based on computer vision and fuzzy logic. Comput. Electron. Agric. 124, 14–22 (2016)CrossRefGoogle Scholar
  4. 4.
    Sujaritha, M., Annadura, S., Satheeshkuma, J., Sharan, S.K., Mahesh, L.: Weed detecting robot in sugarcane fields using fuzzy real time classifier. Comput. Electron. Agric. 134, 160–171 (2017)CrossRefGoogle Scholar
  5. 5.
    Omid, M.: Design of an expert system for sorting pistachio nuts through decision tree and fuzzy logic classifier. Expert Syst. Appl. 38, 4339–4347 (2011)CrossRefGoogle Scholar
  6. 6.
    Craessaerts, G., de Baerdemaeker, J., Missotten, B., Saeys, O.: Fuzzy control of the cleaning process on a combine harvester. Biosys. Eng. 106, 103–111 (2010)CrossRefGoogle Scholar
  7. 7.
    Yerokhin, S.N., Reshetov, A.S.: Vliyanie tekhnologicheskih regulirovok na poteri zerna za molotilkoj kombajna Don-1500 (Influence of technological adjustments on grain loss behind the thresher of the combine Don-1500). Mech. Electrification Agric. 6, 18–19 (2003). (in Russian)Google Scholar
  8. 8.
    Zadeh, L.: Knowledge representation in fuzzy logic. In: Yager, R.R., Zadeh, L.A. (eds.) An Introduction to Fuzzy Logic Applications in Intelligent Systems, The Springer International Series in Engineering and Computer Science, vol. 165, pp. 1–27. Springer, New York (1992)Google Scholar
  9. 9.
    Borisova, L.V. Nurutdinova, I.N., Dimitrov, V.P.: Approach to the problem of choice of values of the adjustable parameters harvester based on fuzzy modeling. Don State Tech. Univ. Bull. 5˗2(81), 100–107 (2015)Google Scholar
  10. 10.
    Averkin, A.N., Batyrshin, I.Z., Blishun, A.F., Silov, V.B., Tarasov, V.B.: Nechetkie mnojestva v modelyah upravleniya i iskusstvennogo intellekta (Fuzzy sets in the models of management and artificial intelligence). Nauka, Moscow (1986). (in Russian)zbMATHGoogle Scholar
  11. 11.
    Kofman, A.: Vvedenie v teoriyu nechyotkih mnozhestv (Introduction in the theory of fuzzy sets). Radio i svyaz’, Moscow (1982). (in Russian)Google Scholar
  12. 12.
    Dimitrov, V., Borisova, L., Nurutdinova, I.: Modelling of fuzzy expert information in the problem of a machine technological adjustment. In: MATEC Web of Conference 13. Ser. 13th International Scientific˗Technical Conference “Dynamic of Technical Systems”, DTS˗2017. P. 04009 (2017)CrossRefGoogle Scholar
  13. 13.
    Borisova, L., Dimitrov, V., Nurutdinova, I.: Algorithm for assessing quality of fuzzy expert information. In: Proceedings of IEEE East˗West Design & Test Symposium (EWDTS 2017), Serbia, pp. 319–322 (2017)Google Scholar
  14. 14.
    Asai, K., Vatada, D., Sugeno, S.: Prikladnie nechetkie sistemi (Applied fuzzy systems). Mir, Moscow (1993). (in Russian)Google Scholar
  15. 15.
    Dimitrov, V.P., Borisova, L.V., Nurutdinova, I.N.: O metodike defazzifikacii nechyotkoj ehkspertnoj informacii (On defuzzification method in fuzzy expert information processing). Don State Tech. Univ. Bull. 10˗6(49), 868–878 (2010). (in Russian)Google Scholar
  16. 16.
    Nurutdinova, I.N., Shumskaya, N.N., Dimitrova, L.A.: Ob ispol’zovanii vesovyh koehfficientov pri formirovanii ehkspertnoj informacii (On the use of weight coefficients in the formation of expert information). In: sbornik statej 10-j Mezhdunarodnoj yubilejnoj nauchno-prakticheskoj konferencii v ramkah 20-j Mezhdunarodnoj agropromyshlennoj vystavki “Interargomash-2017” Sostoyanie i perspektivy razvitiya sel’skohozyajstvennogo mashinostroeniya, pp. 332–334. Don State Technical University, Rostov˗on˗Don (2017). (in Russian)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Valery Dimitrov
    • 1
    Email author
  • Lyudmila Borisova
    • 1
  • Inna Nurutdinova
    • 1
  1. 1.Don State Technical UniversityRostov-on-DonRussian Federation

Personalised recommendations