Knowledge Representation Method for Intelligent Situation Awareness System Design

  • Maria A. Butakova
  • Andrey V. ChernovEmail author
  • Alexander N. Guda
  • Vladimir D. Vereskun
  • Oleg O. Kartashov
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 875)


This work presents a novel method for knowledge representation which is adapted for the design of intelligent situation awareness system. Our idea behind the proposed method is to design the intelligent features of situation awareness system from a human-computer interaction point of view. This dictates the using soft and non-metric approaches for each stage of the proposed method. Our method is suited for distributed and dynamic systems design cycle, so the central part of the paper is devoted to the distributed dynamic logic based on the description logic. Knowledge representation architecture for the distributed case of the intelligent situation awareness system is presented. Detailed definitions, syntax and semantic constructors and axioms with use of the SHOIN description logic for dynamic distributed description logic have been developed.


Knowledge representation Situation awareness Intelligent system Description logic Distributed dynamic description logic 


  1. 1.
    Tretmans, J.: Introduction: situation awareness, systems of systems, and maritime safety and security. In: Tretmans, J., van de Laar, P., Borth, M. (eds.) Situation Awareness with Systems of Systems, pp. 3–20. Springer (2013). Scholar
  2. 2.
    Mozzaquatro, B.A., Jardim-Goncalves, R., Agostinho, C.: Situation awareness in the Internet of Things. In: 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC), Madeira Island, Portugal, pp. 982–990 (2017).
  3. 3.
    Endsley, M.R., Bolte, B., Jones, D.J.: Designing for Situation Awareness: An Approach to Human-Centered Design. CRC, Press, Taylor & Francis, London (2011)CrossRefGoogle Scholar
  4. 4.
    Endsley, M.R.: Situation Awareness Analysis and Measurement. CRC Press, Atlanta (2000). Endsley, M.R., Garland, D.G. (eds.)Google Scholar
  5. 5.
    Chernov, A.V., Butakova, M.A., Karpenko, E.V.: Security incident detection technique for multilevel intelligent control systems on railway transport in Russia. In: 2015 23rd Telecommunications Forum Telfor (TELFOR), pp. 1–4 (2015).
  6. 6.
    Chernov, A.V., Bogachev, V.A., Karpenko, E.V., Butakova, M.A., Davidov, Y.V.: Rough and fuzzy sets approach for incident identification in railway infrastructure management system. In: 2016 XIX IEEE International Conference on Soft Computing and Measurements (SCM), St. Petersburg, pp. 228–230 (2016).
  7. 7.
    Chernov, A.V., Butakova, M.A., Karpenko, E.V., Kartashov, O.O.: Improving security incidents detection for networked multilevel intelligent control systems in railway transport. Telfor J. 8(1), 14–19 (2016). Scholar
  8. 8.
    Chernov, A.V., Butakova, M.A., Vereskun, V.D., Kartashov, O.O.: Mobile smart objects for incidents analysis in railway intelligent control system. Adv. Intell. Syst. Comput. 680, 128–137 (2017). Scholar
  9. 9.
    Chernov, A.V., Butakova, M.A., Vereskun, V.D., Kartashov, O.O.: Situation awareness service based on mobile platforms for multilevel intelligent control system in railway transport. In: 24th Telecommunications Forum, TELFOR, pp. 1–4 (2016).
  10. 10.
    Chernov, A.V., Kartashov, O.O., Butakova, M.A., Karpenko, E.V.: Incident data preprocessing in railway control systems using a rough-set-based approach. In: 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), St. Petersburg, pp. 248–251 (2017).
  11. 11.
    Butakova, M.A., Chernov, A.V., Shevchuk, P.S., Vereskun, V.D.: Complex event processing for network anomaly detection in digital railway communication services. In: 25th Telecommunication Forum (TELFOR), Belgrade, pp. 1–4 (2017).
  12. 12.
    Yants, V.I., Chernov, A.V., Butakova, M.A., Klimanskaya, E.V.: Multilevel data storage model of fuzzy semi-structured data. In: 2015 XVIII International Conference on Soft Computing and Measurements (SCM), vol. 1, pp. 112–114 (2015).
  13. 13.
    Rogozov, Y.: Approach to the construction of a systemic concept. In: Advances in Intelligent Systems and Computing, vol. 679, pp. 429–438 (2017). Scholar
  14. 14.
    Vlachostergiou, A., Caridakis, G., Kollias, S.: Investigating context awareness of affective computing systems: a critical approach. Proc. Comput. Sci. 39, 91–98 (2014). Scholar
  15. 15.
    Borgida, A.: Distributed description logics: assimilating information from peer sources. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on Data Semantics I. Lecture Notes in Computer Science, vol. 2800, pp. 153–184 (2003). Scholar
  16. 16.
    Shi, Z.: A logical foundation for the semantic Web. Sci. China Ser. F 48, 161–178 (2005). Shi, Z., Dong, M., Jiang, Y., et al. Scholar
  17. 17.
    Chang, L., Lin, F., Shi, Z.: A dynamic description logic for semantic web service. In: Third International Conference on Semantics, Knowledge and Grid (SKG 2007), pp. 74–79 (2007).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maria A. Butakova
    • 1
  • Andrey V. Chernov
    • 1
    Email author
  • Alexander N. Guda
    • 1
  • Vladimir D. Vereskun
    • 1
  • Oleg O. Kartashov
    • 1
  1. 1.Rostov State Transport UniversityRostov-on-DonRussia

Personalised recommendations