Advertisement

Methods of Conceptual Modeling of Intelligent Decision Support Systems for Managing Complex Objects at All Stages of Its Life Cycle

  • Aleksey D. Bakhmut
  • Vladislav N. Koromyslichenko
  • Aleksey V. Krylov
  • Michael Yu. Okhtilev
  • Pavel A. Okhtilev
  • Boris V. Sokolov
  • Anton V. Ustinov
  • Alexander E. Zyanchurin
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 875)

Abstract

The article suggests a set of methods for conceptual modeling of the main components of specialized intelligent decision support systems: models and methods for integration and analysis of data, applications, a complex of distributed data and knowledge bases, the design of user interfaces and the organization of distributed computations as part of an intelligent computer-aided engineering system of specialized software. The detailed substantiation of application of a new intelligent information technology and its methods for information modeling of functioning of complex objects in various subject areas of state and industrial purpose is given.

Keywords

Decision support systems Artificial intelligence Computer-Aided software engineering 

Notes

Acknowledgments

The research described in this paper is partially supported by the Russian Foundation for Basic Research (grants 16-07-00779, 16-08-00510, 16-08-01277, 16-29-09482-ofi-i, 17-08-00797, 17-06-00108, 17-01-00139, 17-20-01214, 17-29-07073-ofi-i, 18-07-01272, 18-08-01505), grant 074-U01 (ITMO University), state order of the Ministry of Education and Science of the Russian Federation №2.3135.2017/4.6, state research 0073–2018–0003, International project ERASMUS +, Capacity building in higher education, № 73751-EPP-1-2016-1-DE-EPPKA2-CBHE-JP, Innovative teaching and learning strategies in open modelling and simulation environment for student-centered engineering education.

References

  1. 1.
    Pogorelov, V.I.: System and Its Life Cycle: An Introduction to CALS-Technology: A Tutorial Balt. Gos. Tehn. Un-tPubl., St. Petersburg (2010). 182 p. ISBN 978-5-855-46-581-5 (in Russian)Google Scholar
  2. 2.
    Orlov, S.A., Cil’ker, B.J.: Software Development Technologies: A Textbook for Universities. 4th edn. The Standard of the Third Generation. Piter Publ, St. Petersburg (2012). 608 p. ISBN 978-5-459-011 01-2 (in Russian)Google Scholar
  3. 3.
    GOSTRISO/MJeK 12207-2010. Information technology. System and software engineering. Software life cycle processes (in Russian)Google Scholar
  4. 4.
    ISO/IEC 12207:2008. System and software Engineering - Software life cycle processesGoogle Scholar
  5. 5.
    Kogalovskij, M.R.: Data access systems based on ontologies. In: Programming Institute for Market Problems, №4, pp. 55–77. RAS Publ. (2012). (in Russian)Google Scholar
  6. 6.
    Fedorov, I.G.: Adaptation of the bunge-wanda-weber ontology to the description of executable models of business processes. Applied Informatics Publ. -T. 10, №4, pp. 82–92 (58) (2015). (in Russian)Google Scholar
  7. 7.
    Gehlert, A., Pfeiffer, D., Becker, J.: The BWW-model as method engineering theory. In: Americas Conference on Information Systems (AMCIS), AMCIS 2007 Proceedings, 83, (2007). http://aisel.aisnet.org. Date of the application 29 January 2018
  8. 8.
    Gavrilova, T.A., Kudrjavcev, D.V., Muromcev, D.I.: Knowledge Engineering. Models and Methods: Textbook. Lan Publ, St. Petersburg (2016). 324 p. ISBN 978-5-8114-2128-2 (in Russian)Google Scholar
  9. 9.
    Rybina, G.V., Parondzhanov, S.S.: Modeling the processes of interaction of intelligent agents in multi-agent systems. In: Artificial Intelligence and Decision Making Publ., №3, pp. 3–15 (2008). (in Russian)Google Scholar
  10. 10.
    Business Process Model and Notation (BPMN). Version 2.0.2. OMG Document Number: formal/2013-12-09. www.omg.org/spec/BPMN. Date of the application 31 October 2017, C. 532
  11. 11.
    Halpin, T.: Information Modeling and Relational Databases: From Conceptual Analysis to Logical Design. Morgan Kaufmann (2001). 792 pGoogle Scholar
  12. 12.
    Date, C.J.: An Introduction to Database Systems, 8th edn. Pearson/Addison Wesley Publ. (2004). 1005 p. ISBN 5-8459-0788-8Google Scholar
  13. 13.
    Borgest, N.M.: Ontology of Design: Theoretical Foundations. Part 1. Concepts and Principles. Tutorial. SGAI Publ, Samara (2010). 92 p. (in Russian)Google Scholar
  14. 14.
    Gray, P.M.D.: Logic, Algebra, and Databases. Wiley, New York (1984). 294 p. ISBN 0-321-18956-6Google Scholar
  15. 15.
    Schloegel, K.: Graph Partitioninng for High Performance Scientific Simulations. Minneapolis, Minnesota: Department of Computer Science and Engineering, University of Minnesota (2000). 39 pGoogle Scholar
  16. 16.
    Narinyani, A.S.: Model or Algorithm: A New Paradigm Of Information Technology, № 4, pp. 11–16. Information Technology Publ. (1997). (in Russian)Google Scholar
  17. 17.
    Malyshev, A.V., Gorodeckij, V.I., Karsaev, O.V., Samojlov, V.V., Tihomirov, V.V., Man’kov, E.V.: Multi-agent system for resolving conflict situations in airspace. In: SPIIRAS Proceedings, №3, t. 1. Science Publ, St. Petersburg (2006). (in Russian)Google Scholar
  18. 18.
    Gorodeckij, V.I., Troickij, D.V.: Scenario model and knowledge description language for assessing and predicting situations. In: SPIIRAS Proceedings, № 8, pp. 93–127 (2009). SPIIRAS Publ., St. Petersburg (in Russian)Google Scholar
  19. 19.
    Okhtilev, M.Y.: Basics of the Theory of Automated Analysis of Measurement Information in Real Time. Synthesis of the Analysis System. VIKU them. Mozhaisky Publ., St. Petersburg (1999). 161 p. (in Russian)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aleksey D. Bakhmut
    • 1
  • Vladislav N. Koromyslichenko
    • 2
  • Aleksey V. Krylov
    • 3
  • Michael Yu. Okhtilev
    • 3
  • Pavel A. Okhtilev
    • 3
  • Boris V. Sokolov
    • 3
  • Anton V. Ustinov
    • 1
  • Alexander E. Zyanchurin
    • 3
  1. 1.St.Petersburg State University of Aerospace InstrumentationSaint-PetersburgRussia
  2. 2.Scientific Center « Petrokometa»Saint-PetersburgRussia
  3. 3.St.Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS)Saint-PetersburgRussia

Personalised recommendations