Advertisement

Prediction and Detection of User Emotions Based on Neuro-Fuzzy Neural Networks in Social Networks

  • Giovanni Pilato
  • Sergey A. Yarushev
  • Alexey N. Averkin
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 875)

Abstract

In this paper we propose a neuro-fuzzy method for emotions prediction. On one hand we suggest a taxonomy-based detection of user joyful interests through the use of semantic spaces and, on the other hand, we propose a neuro-fuzzy method for prediction of emotions used in Twitter posts. Catching the attention of a new acquaintance and empathize with her can improve the social skills of a robot. For this reason, we illustrate here the first step towards a system which can be used by a social robot in order to “break the ice” with a new acquaintance.

Notes

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (Grant No. 17-07-01558).

References

  1. 1.
    Brethes, L., Menezes, P., Lerasle, F., Hayet, J.: Face tracking and hand gesture recognition for human-robot interaction. In: IEEE International Conference on Robotics and Automation, vol. 2, pp 1901–1906. IEEE (2004)Google Scholar
  2. 2.
    Corrigan Lee, J., Peters, C., Küster, D., Castellano, G.: Engagement perception and generation for social robots and virtual agents. In: Toward Robotic Socially Believable Behaving Systems, vol. I, Intelligent Systems Reference Library 105, pp. 29–51. Springer (2016)Google Scholar
  3. 3.
    Cuzzocrea, A., Pilato, G.: Taxonomy-based detection of user emotions for advanced artificial intelligent applications. In: de Cos Juez, F., et al. (eds.) Hybrid Artificial Intelligent Systems. HAIS 2018. Lecture Notes in Computer Science, vol. 10870. Springer, Cham (2018)Google Scholar
  4. 4.
    D’Avanzo, E., Pilato, G.: Mining social network users opinions’ to aid buyers’ shopping decisions. Comput. Hum. Behav. 51, 1284–1294 (2014)CrossRefGoogle Scholar
  5. 5.
    D’Avanzo, E., Pilato, G., Lytras, M.D.: Using twitter sentiment and emotions analysis of Google trends for decisions making. Program 51(3) (2017)CrossRefGoogle Scholar
  6. 6.
    Delaherche, E., Dumas, G., Nadel, J., Chetouani, M.: Automatic measure of imitation during social interaction: a behavioral and hyperscanning-EEG benchmark. Patt. Recognit. Lett. (2014)Google Scholar
  7. 7.
    Ekman, P., Friesen, W.V.: Constants across cultures in the face and emotion. J. Personal. Soc. Psychol. 17, 124 (1971)CrossRefGoogle Scholar
  8. 8.
    Interactive Advertising Bureau (IAB) Contextual Taxonomy. http://www.iab.net/. Accessed Dec 2017
  9. 9.
    Kanagasabai, R., Veeramani, A., Ngan, L.D., Yap, G.E., Decraene, J., Nash, A.S.: Using semantic technologies to mine customer insights in telecom industry. In: International Semantic Web Conference (Industry Track) (2014)Google Scholar
  10. 10.
    Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference system. In: IEEE Transactions on Systems, Man, and Cybernetics, pp. 665–685. IEEE (1993)Google Scholar
  11. 11.
    Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104(2), 211–223 (1990)CrossRefGoogle Scholar
  12. 12.
    Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse Process. 25, 259–284 (1998)CrossRefGoogle Scholar
  13. 13.
    Liu, B.: Sentiment analysis and subjectivity. In: Indurkhya, N., Damerau, F.J. (eds.) Handbook of Natural Language Processing, pp. 627–665. CRC Press (2010)Google Scholar
  14. 14.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for Computational Linguistics (2002)Google Scholar
  15. 15.
    Pilato, G., D’Avanzo, E.: Data-driven social mood analysis through the conceptualization of emotional fingerprints. Procedia Comput. Sci. (2018, in press)Google Scholar
  16. 16.
    Averkin, A.N., Yarushev, S.: Hybrid approach for time series forecasting based on ANFIS and fuzzy cognitive maps. In: 2017 XX IEEE International Conference Soft Computing and Measurements (SCM), pp. 379–381. IEEE (2017)Google Scholar
  17. 17.
    Strapparava, C., Mihalcea, R.: Semeval-2007 task 14: affective text. In: Proceedings of the 4th International Workshop on Semantic Evaluations, pp. 70–74. Association for Computational Linguistics (2007)Google Scholar
  18. 18.
    Strapparava, C., Mihalcea, R.: Learning to identify emotions in text. In: SAC 2008 Proceedings of the 2008 ACM Symposium on Applied Computing (2008)Google Scholar
  19. 19.
    Terrana, D., Augello, A., Pilato, G.: Facebook users relationships analysis based on sentiment classification. In: Proceedings of 2014 IEEE International Conference on Semantic Computing (ICSC), pp. 290–296 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Giovanni Pilato
    • 1
  • Sergey A. Yarushev
    • 2
  • Alexey N. Averkin
    • 3
  1. 1.ICAR-CNRArcavacataItaly
  2. 2.Plekhanov Russian University of EconomicsMoscowRussia
  3. 3.Dorodnicyn Computing Centre, FRC CSC RASMoscowRussia

Personalised recommendations