Prediction and Detection of User Emotions Based on Neuro-Fuzzy Neural Networks in Social Networks

  • Giovanni PilatoEmail author
  • Sergey A. Yarushev
  • Alexey N. Averkin
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 875)


In this paper we propose a neuro-fuzzy method for emotions prediction. On one hand we suggest a taxonomy-based detection of user joyful interests through the use of semantic spaces and, on the other hand, we propose a neuro-fuzzy method for prediction of emotions used in Twitter posts. Catching the attention of a new acquaintance and empathize with her can improve the social skills of a robot. For this reason, we illustrate here the first step towards a system which can be used by a social robot in order to “break the ice” with a new acquaintance.



This work was supported by the Russian Foundation for Basic Research (Grant No. 17-07-01558).


  1. 1.
    Brethes, L., Menezes, P., Lerasle, F., Hayet, J.: Face tracking and hand gesture recognition for human-robot interaction. In: IEEE International Conference on Robotics and Automation, vol. 2, pp 1901–1906. IEEE (2004)Google Scholar
  2. 2.
    Corrigan Lee, J., Peters, C., Küster, D., Castellano, G.: Engagement perception and generation for social robots and virtual agents. In: Toward Robotic Socially Believable Behaving Systems, vol. I, Intelligent Systems Reference Library 105, pp. 29–51. Springer (2016)Google Scholar
  3. 3.
    Cuzzocrea, A., Pilato, G.: Taxonomy-based detection of user emotions for advanced artificial intelligent applications. In: de Cos Juez, F., et al. (eds.) Hybrid Artificial Intelligent Systems. HAIS 2018. Lecture Notes in Computer Science, vol. 10870. Springer, Cham (2018)Google Scholar
  4. 4.
    D’Avanzo, E., Pilato, G.: Mining social network users opinions’ to aid buyers’ shopping decisions. Comput. Hum. Behav. 51, 1284–1294 (2014)CrossRefGoogle Scholar
  5. 5.
    D’Avanzo, E., Pilato, G., Lytras, M.D.: Using twitter sentiment and emotions analysis of Google trends for decisions making. Program 51(3) (2017)CrossRefGoogle Scholar
  6. 6.
    Delaherche, E., Dumas, G., Nadel, J., Chetouani, M.: Automatic measure of imitation during social interaction: a behavioral and hyperscanning-EEG benchmark. Patt. Recognit. Lett. (2014)Google Scholar
  7. 7.
    Ekman, P., Friesen, W.V.: Constants across cultures in the face and emotion. J. Personal. Soc. Psychol. 17, 124 (1971)CrossRefGoogle Scholar
  8. 8.
    Interactive Advertising Bureau (IAB) Contextual Taxonomy. Accessed Dec 2017
  9. 9.
    Kanagasabai, R., Veeramani, A., Ngan, L.D., Yap, G.E., Decraene, J., Nash, A.S.: Using semantic technologies to mine customer insights in telecom industry. In: International Semantic Web Conference (Industry Track) (2014)Google Scholar
  10. 10.
    Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference system. In: IEEE Transactions on Systems, Man, and Cybernetics, pp. 665–685. IEEE (1993)Google Scholar
  11. 11.
    Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104(2), 211–223 (1990)CrossRefGoogle Scholar
  12. 12.
    Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse Process. 25, 259–284 (1998)CrossRefGoogle Scholar
  13. 13.
    Liu, B.: Sentiment analysis and subjectivity. In: Indurkhya, N., Damerau, F.J. (eds.) Handbook of Natural Language Processing, pp. 627–665. CRC Press (2010)Google Scholar
  14. 14.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for Computational Linguistics (2002)Google Scholar
  15. 15.
    Pilato, G., D’Avanzo, E.: Data-driven social mood analysis through the conceptualization of emotional fingerprints. Procedia Comput. Sci. (2018, in press)Google Scholar
  16. 16.
    Averkin, A.N., Yarushev, S.: Hybrid approach for time series forecasting based on ANFIS and fuzzy cognitive maps. In: 2017 XX IEEE International Conference Soft Computing and Measurements (SCM), pp. 379–381. IEEE (2017)Google Scholar
  17. 17.
    Strapparava, C., Mihalcea, R.: Semeval-2007 task 14: affective text. In: Proceedings of the 4th International Workshop on Semantic Evaluations, pp. 70–74. Association for Computational Linguistics (2007)Google Scholar
  18. 18.
    Strapparava, C., Mihalcea, R.: Learning to identify emotions in text. In: SAC 2008 Proceedings of the 2008 ACM Symposium on Applied Computing (2008)Google Scholar
  19. 19.
    Terrana, D., Augello, A., Pilato, G.: Facebook users relationships analysis based on sentiment classification. In: Proceedings of 2014 IEEE International Conference on Semantic Computing (ICSC), pp. 290–296 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Giovanni Pilato
    • 1
    Email author
  • Sergey A. Yarushev
    • 2
  • Alexey N. Averkin
    • 3
  1. 1.ICAR-CNRArcavacataItaly
  2. 2.Plekhanov Russian University of EconomicsMoscowRussia
  3. 3.Dorodnicyn Computing Centre, FRC CSC RASMoscowRussia

Personalised recommendations