Advertisement

Computer-Aided Event Tree Synthesis on the Basis of Case-Based Reasoning

  • Aleksandr F. Berman
  • Olga A. Nikolaychuk
  • Aleksandr Yu. Yurin
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 875)

Abstract

Emergency analysis and technogenic risk assessment are the key concepts of the technogenic safety research. There are some methods used for their investigation, for example, the event tree analysis method. But the high complexity of building and verification of event trees of complex technogenic systems significantly weakens the effectiveness of the practical application of this method and requires development of special software and modification of the standard methodology. This paper describes a new algorithm for computer-aided event tree synthesis for technical systems in petrochemistry. The proposed algorithm is based on the original model of the object technical state dynamics which describes cause-effect relationships between the parameters in different time intervals and a case-based reasoning approach. The model of the technical state dynamics is formalized in the form of the technical states matrix. The case-based reasoning approach is used for implementation of the algorithm proposed. The elements of software, including functions, the architecture and the information process of event tress synthesis are described.

Keywords

Case-based reasoning Event tree Synthesis 

References

  1. 1.
    Faisal, I., Abbasi, S.: Analytical simulation and PROFAT II: a new methodology and a computer automated tool for fault tree analysis in chemical process industries. J. Hazard. Mater. 87(1–3), 23–56 (2001).  https://doi.org/10.1016/S0304-3894(00)00169-2CrossRefGoogle Scholar
  2. 2.
    Henley, E., Kumamoto, H.: Reliability Engineering and Risk Assessment. Prentice-Hall Inc., Englewood Cliffs (1981)Google Scholar
  3. 3.
    Kumamoto, H.: Chapter 7 – Fault tree analysis. In: Fundamental Studies in Engineering, vol. 16, pp. 249–311. Elsevier, New York (1993)Google Scholar
  4. 4.
    Papazoglou, I.: Functional block diagrams and automated construction of event trees. Reliab. Eng. Syst. Saf. 61(3), 185–214 (1998).  https://doi.org/10.1016/S0951-8320(98)00011-8CrossRefGoogle Scholar
  5. 5.
    Walker, M., Papadopoulos, Y.: Synthesis and analysis of temporal fault trees with PANDORA: the time of Priority AND gates. Nonlinear Anal. Hybrid Syst. 2, 368–382 (2008).  https://doi.org/10.1016/j.nahs.2006.05.003MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Wang, Y., Teague, T., West, H., Mannan, S., O’Connor, M.: A new algorithm for computer-aided fault tree synthesis. J. Loss Prev. Process. Ind. 15(4), 265–277 (2002).  https://doi.org/10.1016/S0950-4230(02)00011-6CrossRefGoogle Scholar
  7. 7.
    Yang, Z.-X., Zheng, Y.-Y., Xue, J.-X.: Development of automatic fault tree synthesis system using decision matrix. Int. J. Prod. Econ. 121(1), 49–56 (2009).  https://doi.org/10.1016/j.ijpe.2008.02.021CrossRefGoogle Scholar
  8. 8.
    Bobbio, A., Ciancamerla, E., Franceschinis, G., Gaeta, R., Minichino, M., Portinale, L.: Sequential application of heterogeneous models for the safety analysis of a control system: a case study. Reliab. Eng. Syst. Saf. 81, 269–280 (2003).  https://doi.org/10.1016/S0951-8320(03)00091-7CrossRefGoogle Scholar
  9. 9.
    Wang, Y., Li, Q., Chang, M., Chen, H., Zang, G.: Research on fault diagnosis expert system based on the neural network and the fault tree technology. Procedia Eng. 31, 1206–1210 (2012).  https://doi.org/10.1016/j.proeng.2012.01.1164CrossRefGoogle Scholar
  10. 10.
    ISO/IEC 31010:2009 Risk management - Risk assessment techniquesGoogle Scholar
  11. 11.
    Majdara, A., Wakabayashi, T.: Component-based modeling of systems for automated fault tree generation. Reliab. Eng. Syst. Saf. 94(6), 1076–1086 (2002).  https://doi.org/10.1016/j.ress.2008.12.003CrossRefGoogle Scholar
  12. 12.
    Ferdous, R., Khan, F., Veitch, B., Amyotte, P.: Methodology for computer-aided fault tree analysis. Process. Saf. Environ. Prot. 85(1), 70–80 (2007).  https://doi.org/10.1205/psep06002CrossRefGoogle Scholar
  13. 13.
    Risk spectrum homepage. http://www.riskspectrum.com/en/risk/. Accessed 16 Mar 2018
  14. 14.
  15. 15.
  16. 16.
    SZMA homepage. http://www.szma.com/pkasm.shtml. Accessed 16 Mar 2018
  17. 17.
    Berman, A., Nikolaichuk, O.: Technical state space of unique mechanical systems. J. Mach. Manuf. Reliab. 36, 10–16 (2007).  https://doi.org/10.3103/S105261880CrossRefGoogle Scholar
  18. 18.
    Berman, A.: Formalization of formation processes of failure for unique mechanical systems. J. Mach. Manuf. Reliab. 3, 89–95 (1994)Google Scholar
  19. 19.
    Berman, A., Nikolaychuk, O., Pavlov, A., Yurin, A.: A methodology for the investigation of the reliability and safety of unique technical systems. Proc. Inst. Mech. Eng., Part O: J. Risk Reliab. 228(1), 29–38 (2014).  https://doi.org/10.1177/1748006X13494820CrossRefGoogle Scholar
  20. 20.
    Berman, A., Khramova, V.: Automated data base for failures in pipelines and tubular high-pressure apparatus. Chem. Pet. Eng. 29, 63–66 (1993)CrossRefGoogle Scholar
  21. 21.
    Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7, 39–59 (1994).  https://doi.org/10.3233/aic-1994-7104
  22. 22.
    Bergmann, R.: Experience Management. LNAI, vol. 2432. Springer, Heidelberg (2002)Google Scholar
  23. 23.
    Nikolaychuk, O., Yurin, A.: Computer-aided identification of mechanical system’s technical state with the aid of case-based reasoning. Expert. Syst. Appl. 34, 635–642 (2008).  https://doi.org/10.1016/j.eswa.2006.10.001CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aleksandr F. Berman
    • 1
  • Olga A. Nikolaychuk
    • 1
  • Aleksandr Yu. Yurin
    • 1
    • 2
  1. 1.Matrosov Institute for System Dynamics and Control Theory, Siberian Branch of the Russian Academy of SciencesIrkutskRussia
  2. 2.Irkutsk National Research Technical UniversityIrkutskRussia

Personalised recommendations