A Fuzzy Evaluation of Quality for Color Vision Disorders Diagnostic

  • Monika BorovaEmail author
  • Jaromir Konecny
  • Michal Prauzek
  • Karolina Janosova
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 874)


The quality of testing represents one of the most important aspect in color vision testing, because the testing software can be as good as possible, but if the examination is not done under the right conditions, the results will not be accurate. This paper proposes a fuzzy system, which is able to determine the quality of software based testing alike the manual testing. Proposed fuzzy system determines the quality based on visual disorder, error score and condition of testing. System is based on CCD model (conjunction-conjunction-disjunction) and the defuzzification uses method of Center of Gravity. Data for testing come from testing of reliability comparison of software based and standard based method of Farnsworth-Munsell 100 Hue Test.


Farnsworth-Munsell Color vision disorders Fuzzy expert system Quality of testing 



This work was supported by the European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project, project number CZ.02.1.01/0.0/0.0/16_019/0000867 within the Operational Program Research, Development and Education s the project SP2018/160, “Development of algorithms and systems for control, measurement and safety applications IV” of Student Grant System, VSB-TU Ostrava.


  1. 1.
    Coren, S.: The Farnsworth-Munsell 100-hue test: a BASIC program for scoring and analysis. Behav. Res. Methods Instrum. Comput. 18(3), 323–324 (1986)CrossRefGoogle Scholar
  2. 2.
    Duţu, L.C., Mauris, G., Bolon, P.: A fast and accurate rule-base generation method for mamdani fuzzy systems. IEEE Trans. Fuzzy Syst. 26(2), 715–733 (2018)CrossRefGoogle Scholar
  3. 3.
    Hidajat, R.R., Hidayat, J.R., McLay, J.L., Elder, M.J., Goode, D.H., Pointon, R.C.: A fast system for reporting the Farnsworth-Munsell 100-hue colour vision test. Doc. Ophthalmol. 109(2), 109–114 (2004)CrossRefGoogle Scholar
  4. 4.
    Hidayat, R.: Generating fast automated reports for the Farnsworth-Munsell 100-hue colour vision test. In: Proceedings of New Zealand Computer Science Research Student Conference, NZCSRSC 2008, pp. 37–40 (2008)Google Scholar
  5. 5.
    Hill, A.R., Reeves, B.C., Burgess, A.: Huematican automated scorer for the Farnsworth-Munsell 100 hue test. Eye (Basingstoke) 2(1), 80–86 (1988)Google Scholar
  6. 6.
    Hlavica, J., Prauzek, M., Peterek, T., Musilek, P.: Assessment of Parkinson’s disease progression using neural network and anfis models. Neural Netw. World 26(2), 111–128 (2016)CrossRefGoogle Scholar
  7. 7.
    Kandel, A.: Fuzzy Expert Systems. CRC Press, Boca Raton (1991)zbMATHGoogle Scholar
  8. 8.
    Lee, C.S., Wang, M.H.: A fuzzy expert system for diabetes decision support application. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 41(1), 139–153 (2011)CrossRefGoogle Scholar
  9. 9.
    Lugo, M., Tiedeman, J.S.: Computerized scoring and graphing of the Farnsworth-Munsell 100-hue color vision test. Am. J. Ophthalmol. 101(4), 469–474 (1986)CrossRefGoogle Scholar
  10. 10.
    Mercer, M.E., Drodge, S.C., Courage, M.L., Adams, R.J.: A pseudoisochromatic test of color vision for human infants. Vis. Res. 100, 72–77 (2014)CrossRefGoogle Scholar
  11. 11.
    Mntyjrvi, M.: Normal test scores in the Farnsworth-Munsell 100 hue test. Doc. Ophthalmol. 102(1), 73–80 (2001)CrossRefGoogle Scholar
  12. 12.
    Novak, V., Perfilieva, I., Mockor, J.: Mathematical Principles of Fuzzy Logic, vol. 517. Springer, New York (2012)zbMATHGoogle Scholar
  13. 13.
    Prauzek, M., Hlavica, J., Michalikova, M.: Automatic fuzzy classification system for metabolic types detection. Advances in Intelligent Systems and Computing, vol. 370 (2015)Google Scholar
  14. 14.
    Prauzek, M., Hlavica, J., Michalikova, M., Jirka, J.: Fuzzy clustering method for large metabolic data set by statistical approach. In: Proceedings of the 7th Cairo International Biomedical Engineering Conference, CIBEC 2014, pp. 87–90 (2015)Google Scholar
  15. 15.
    Roy, M., Gunkel, R., Rodgers, G., Schechter, A.: Lanthony desaturated panel D15 test in sickle cell patients. Graefe’s Arch. Clin. Exp. Ophthalmol. 226(4), 326–329 (1988)CrossRefGoogle Scholar
  16. 16.
    Roy Choudhury, A.K.: Colorimetric study of scotdic colour specifier. Color. Technol. 124(5), 273–284 (2008)CrossRefGoogle Scholar
  17. 17.
    Saade, J.J., Diab, H.B.: Defuzzification methods and new techniques for fuzzy controllers (2004)Google Scholar
  18. 18.
    Taylor, W.O.: Clinical experience of electronic calculation and automatic plotting of Farnsworth’s 100-hue test. Mod. Probl. Ophthalmol. 19, 150–154 (1978)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Monika Borova
    • 1
    Email author
  • Jaromir Konecny
    • 1
  • Michal Prauzek
    • 1
  • Karolina Janosova
    • 1
  1. 1.Department of Cybernetics and Biomedical EngineeringVSB-Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations