Advertisement

Designing the Knowledge Base for the Intelligent Inertial Regulator Based on Quasi-optimal Synthesis of Controls Using the Combined Maximum Principle

  • Andrey Kostoglotov
  • Sergey Lazarenko
  • Alexander Agapov
  • Zoya Lyaschenko
  • Irina Pavlova
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 874)

Abstract

Knowledge engineering and the design of knowledge bases are now the most important sections of artificial intelligence. They require to develop a closed set of rules of logical inference based on effective control laws. The paper proposes a new algorithm for the synthesis the intelligent control systems, which mode of operation is determined by the closest proximity to the control law optimal for the chosen criterion and the physical realizability of the inertial regulator. The proposed approach allows us to determine the elements of the knowledge base based on the developed synthesis procedure in the problems to construct the set of product rules in the class of measurable piecewise-continuous and piecewise-constant controls.

Keywords

Analytical design of the regulator Combined maximum principle Synthesis Control 

References

  1. 1.
    Krut’ko, P.D., Palosh, V.E.: Stabilizing equilibrium states of double pendulum loaded by follower and conservative forces. J. Comput. Syst. Sci. Int. 48, 165–178 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1986)Google Scholar
  3. 3.
    Bellman, R.: Dinamicheskoe programmirovanie (Dynamic Programming). Foreign Literature Publishing House, Moscow (1960)Google Scholar
  4. 4.
    Kostoglotov, A.A., Kostoglotov, A.I., Lazarenko, S.V.: The combined-maximum principle in problems of estimating the motion parameters of a maneuvering aircraft. J. Commun. Technol. Electron. 54, 431–438 (2009)CrossRefGoogle Scholar
  5. 5.
    Surkov, V.V., Sukhinin, B.V., Lovcenkov, V.I., Solovev, A.E.: Analiticheskoe konstruirovanie optimal’nyh regulyatorov po kriteriyam tochnosti, bystrodejstviya, ehnergosberezheniya (Analytical designing of optimum regulators on the criteria as well as the accuracy, speed, power-saving). Publishing House of Tula State University, Tula (2005)Google Scholar
  6. 6.
    Letov, A.M.: Dinamika poleta i upravlenie (Flight dynamics and control). Nauka, Moscow (1969)Google Scholar
  7. 7.
    Krasovskii, A.A.: Analiticheskoe konstruirovanie konturov upravleniya letatel’nymi apparatami (Analytical design of control loops letatel-governmental apparatus). Mechanical Engineering, Moscow (1969)Google Scholar
  8. 8.
    Lur’e, A.I., Analiticheskaya Mekhanika (Analytical mechanics). Gos. Izd. Fiz.-Matem. Liter., Moscow (1961)Google Scholar
  9. 9.
    Kostoglotov, A.A., Kostoglotov, A.I., Lazarenko, S.V.: Joint Maximum Principle in the Problem of Synthesizing an Optimal Control of Nonlinear Systems. Autom. Control Comput. Sci. 41, 274–281 (2007)CrossRefGoogle Scholar
  10. 10.
    Derabkin, I., Kostoglotov, A., Lazarenko, S., Lyashchenko, Z.: Intellectualization of industrial systems based on the synthesis of a robotic manipulator control using a combined-maximum principle method. Adv. Intell. Syst. Comput. 451, 375–384 (2016)CrossRefGoogle Scholar
  11. 11.
    Kostoglotov, A.A., Lazarenko, S.V., Kuznetcov, A.A., Lyashchenko, Z.V.: Method of quasi-optimal synthesis using invariants. In: MATEC Web of Conference, vol. 77, pp. 1–4 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrey Kostoglotov
    • 1
  • Sergey Lazarenko
    • 1
    • 2
  • Alexander Agapov
    • 1
  • Zoya Lyaschenko
    • 1
  • Irina Pavlova
    • 2
  1. 1.Rostov State Transport UniversityRostov-on-DonRussian Federation
  2. 2.Moscow State University of Technology and Management named after K.G. Razumovsky, The First Cossacs UniversityMoscowRussian Federation

Personalised recommendations