Skip to main content

Modelling of Water Flow and Solute Transport in Soil

  • Chapter
  • First Online:
Applied Soil Hydrology

Part of the book series: Theory and Applications of Transport in Porous Media ((TATP,volume 32))

Abstract

The chapter presents the basic state of the art of water flow and solute transport modelling in unsaturated zone of soil. It provides a brief overview of model development and categorisation according to various criteria. The governing equations of water flow and solute transport, the time and space discretization of the computing domain, the initial and boundary conditions, the necessary input data and model outputs are presented. The chapter includes a short description of the most popular models of water and energy transport in variably saturated porous media. The challenges regarding the modelling of water flow, solute transport and marginally of other soil processes in the soil, along with references, are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsen P, Hansen S (2000) Daisy: an open soil-crop-atmosphere system model. Environ Model Softw 15:313–330

    Article  Google Scholar 

  • Ahuja LR, Hebson C (1992) Water, chemical, and heat transport in soil matrix and macropores. In: Root zone water quality model, version 1.0 technical documentation. GPSR Tech. Report No. 2, USDA-ARS-GPSR, Colorado

    Google Scholar 

  • Alaoui A, Caduf U, Gerke HH, Weingartner R (2011) Preferential flow effects on infiltration and runoff in grassland and forest soils. Vadose Zone J 10:367–377

    Article  Google Scholar 

  • Allaire SE, Roulier S, Cessna AJ (2009) Quantifying preferential flow in soils: a review of different techniques. J Hydrol 378:179–204

    Article  Google Scholar 

  • Bachmair S, Weiler M, Nützmann G (2010) Benchmarking of two dual-permeability models under different land use and land cover. Vadose Zone J 9:226–237

    Article  Google Scholar 

  • Beven K, Germann P (1982) Macropores and water flow in soils. Water Resour Res 18:1311–1325

    Article  Google Scholar 

  • Bowden GJ, Dandy GC, Maier HR (2005) Input determination for neural network models in water resources applications. Part 1- background and methodology. J Hydrol 301:75–92

    Article  Google Scholar 

  • Capuliak J, Pichler V, Flühler H, Pichlerová M, Homolák M (2010) Beech forest density control on the dominant water flow types in andic soils. Vadose Zone J 9:747–756

    Article  Google Scholar 

  • Chen C, Wagenet RJ (1992) Simulation of water and chemicals in macropore soils. Part 1. Representation of the equivalent macropore influence and its effect on soil water flow. J Hydrol 130:105–126

    Article  Google Scholar 

  • Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of field water use and crop yield. Simulation Monographs, Pudoc for the Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands, p 189

    Google Scholar 

  • Finsterle S, Doughty C, Kowalsky MB, Moridis GJ, Pan L, Xu T, Zhang Y, Pruess K (2008) Advanced vadose zone simulations using TOUGH. Vadose Zone J 7:601–609

    Article  Google Scholar 

  • Furman A (2008) Modeling coupled surface-subsurface flow processes: a review. Vadose Zone J 7:741–756

    Article  Google Scholar 

  • Gerke HH (2006) Preferential flow descriptions for structured soils. J Plant Nutr Soil Sci 169:382–400

    Article  Google Scholar 

  • Gerke HH (2012) Macroscopic representation of the interface between flow domains in structured soil. Vadose Zone J 11. https://doi.org/10.2136/vzj2011.0125

    Article  Google Scholar 

  • Gerke HH, van Genuchten MT (1993) A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour Res 29:305–319

    Article  Google Scholar 

  • Gerke KM, Sidle RC, Mallants D (2015) Preferential flow mechanisms identified from staining experiments in forested hillslopes. Hydrol Process 29:4562–4578

    Article  Google Scholar 

  • Germann PF, Beven K (1985) Kinematic wave approximation to infiltration into soils with sorbing macropores. Water Resour Res 21:990–996

    Article  Google Scholar 

  • Hansen S, Jensen HE, Nielsen NE, Svendsen H (1991) Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model Daisy. Fertil Res 27:245–259

    Article  Google Scholar 

  • Hansen S, Abrahamsen P, Petersen CT, Styczen M (2012) Daisy: model use, calibration, and validation. Trans ASABE 55:1315–1333

    Article  Google Scholar 

  • Healy RW (2008) Simulating water, solute, and heat transport in the subsurface with the VS2DI software package. Vadose Zone J 7:632–639

    Article  Google Scholar 

  • Hopmans JW, Šimůnek J, Romano N, Durner W (2002) 3.6.2 inverse methods. In: Dane JH, Topp GC (eds) Methods of soil analysis. Part 4. Physical methods. SSSA Book Series 5. SSSA, Madison, WI, pp 963–1008

    Google Scholar 

  • Jansson PE (2012) Coup model: model use, calibration, and validation. Trans ASABE 55:1303–1313

    Article  Google Scholar 

  • Jansson PE, Karlberg L (2004) Coup manual. Coupled heat and mass transfer model for soil-plant-atmosphere systems. Royal Institute of Technology, Department of Water and Resources Engineering, Stockholm. https://www.researchgate.net/publication/292875837

  • Jarvis N (1994) The MACRO model (version 3.1): technical description and sample simulations. Reports and Dissertations 19, Swedish Univ of Agric Sci, Dept Soil Sci, Uppsala

    Google Scholar 

  • Jarvis NJ (2007) A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci 58:523–546

    Article  Google Scholar 

  • Jarvis N, Larsbo M (2012) MACRO (v5.2): model use, calibration, and validation. Trans ASABE 55:1413–1423

    Article  Google Scholar 

  • Jarvis N, Koestel J, Larsbo M (2016) Understanding preferential flow in the vadose zone: recent advances and future prospects. Vadose Zone J 15. https://doi.org/10.2136/vzj2016.09.0075

    Article  Google Scholar 

  • Kodešová R (2012) Modeling in pedology. Czech University of Life Sciences, Prague, pp 152 (in Czech)

    Google Scholar 

  • Kodešová R, Šimůnek J, Nikodem A, Jirků V (2010) Estimation of the dual-permeability model parameters using tension disk infiltrometer and Guelph permeameter. Vadose Zone J 9:213–225

    Article  Google Scholar 

  • Köhne JM, Mohanty B, Šimůnek J, Gerke HH (2004) Numerical evaluation of a second-order water transfer term for variably saturated dual-permeability models. Water Resour Res 40:W07409. https://doi.org/10.1029/2004WR003285

    Article  Google Scholar 

  • Köhne JM, Köhne S, Šimůnek J (2009) A review of model applications for structured soils: a) Water flow and tracer transport. J Contam Hydrol 104:4–35

    Article  Google Scholar 

  • Laine-Kaulio H, Backnäs S, Koivusalo H, Laurén A (2015) Dye tracer visualization of flow patterns and pathways in glacial sandy till at a boreal forest hillslope. Geoderma 259–260:23–34

    Article  Google Scholar 

  • Lin H (2010) Linking principles of soil formation and flow regimes. J Hydrol 393(1–2):3–19

    Article  Google Scholar 

  • Moriasi DN, Wilson BN, Douglas-Mankin KR, Arnold JG, Gowda PH (2012) Hydrologic and water quality models: use, calibration, and validation. Trans ASABE 55:1241–1247

    Article  Google Scholar 

  • Novák V, Šimůnek J, van Genuchten MT (2000) Infiltration of water into soils with cracks. J Irrig Drain Eng 126:41–47

    Article  Google Scholar 

  • Radcliffe DE, Šimůnek J (2010) Soil physics with HYDRUS. Modeling and applications. CRC Press, Taylor & Francis Group, Boca Raton, USA

    Google Scholar 

  • Sander T, Gerke HH (2007) Preferential flow patterns in paddy fields using a dye tracer. Vadose Zone J 6:105–115

    Article  Google Scholar 

  • Scherrer S, Naef F (2003) A decision scheme to indicate dominant hydrological flow processes on temperate grassland. Hydrol Process 17:391–401

    Article  Google Scholar 

  • Schwen A, Bodner G, Loiskandl W (2011) Time-variable soil hydraulic properties in near-surface soil water simulations for different tillage methods. Agric Water Management 99:42–50

    Article  Google Scholar 

  • Šimůnek J (2005) 78 models of water flow and solute transport in the unsaturated zone. In: Anderson MG (ed) Encyclopedia of hydrological sciences, Part 6. Soils. Wiley, New York, pp 1171–1180

    Google Scholar 

  • Šimůnek J, Bradford SA (2008) Vadose zone modeling: introduction and importance. Vadose Zone J 7:581–586

    Article  Google Scholar 

  • Šimůnek J, de Vos JA (1999) Inverse optimization, calibration and validation of simulation models at the field scale. In: Feyen J, Wyio K (eds) Modelling of transport processes in soils at various scales in time and space. International workshop of EurAgEng’s field of interest on soil and water, 24–26 Nov, Leuven (Belgium), Wageningen Pers., Wageningen, pp 431–445

    Google Scholar 

  • Šimůnek J, Hopmans JW (2002) 1.7 parameter optimization and nonlinear fitting. In: Dane JH, Topp GC (eds) Methods of soil analysis. Part 4. Physical methods. SSSA Book Series 5. SSSA, Madison, WI, pp 139–158

    Google Scholar 

  • Šimůnek J, van Genuchten MT (2008) Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J 7:782–797

    Article  Google Scholar 

  • Šimůnek J, Huang K, Šejna M, van Genuchten MT, Majerčák J, Novák V, Šútor J (1997) The HYDRUS-ET software package for simulating the one-dimensional movement of water, heat and multiple solutes in variably saturated media, version 1.1. Institute of Hydrology, Slovak Academy of Sciences, Bratislava, p 184

    Google Scholar 

  • Šimůnek J, Jarvis NJ, van Genuchten MT, Gärdenäs A (2003) Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J Hydrol 272:14–35

    Article  Google Scholar 

  • Šimůnek J, Šejna M, Saito H, Sakai M, van Genuchten MT (2013) The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, version 4.17. Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA, p 308

    Google Scholar 

  • Šimůnek J, van Genuchten MT, Šejna M (2016) Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J. https://doi.org/10.2136/vzj2016.04.0033

    Article  Google Scholar 

  • Stenemo F, Jarvis N (2010) Users guide to MACRO 5.2, a model of water flow and solute transport in macroporous soil. Technical descriptions. Swedish University of Agricultural Sciences, Department of Soil and environment, Division Biogeophysics and Water Quality. https://www.slu.se/globalassets/ew/org/centrb/ckb/modeller_dokument/macro-users-guide-2010.pdf

  • Twarakavi NKC, Šimůnek J, Seo S (2008) Evaluating interactions between groundwater and vadose zone using the HYDRUS-based flow package for MODFLOW. Vadose Zone J 7:757–768

    Article  Google Scholar 

  • Twarakavi NKC, Saito H, Šimůnek J, van Genuchten MT (2010) Inverse modeling of vadose zone flow processes using squared ε-intensitivity loss function. J Hydrol Hydromech 58:188–200

    Article  Google Scholar 

  • van Dam JC, Groenendijk P, Hendriks RFA, Kroes JG (2008) Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone J 7:640–653

    Article  Google Scholar 

  • Vereecken et al (2016) Modeling soil processes: review, key challenges, and new perspectives. Vadose Zone J. https://doi.org/10.2136/vzj2015.09.0131

    Article  Google Scholar 

  • Vogel T, Cislerova M, Hopmans JW (1991) Porous media with linearly variable hydraulic properties. Water Resour Res 27:2735–2741

    Article  Google Scholar 

  • Vrugt JA, Stauffer PH, Wöhling Th, Robinson BA, Vesselinov VV (2008) Inverse modeling of subsurface flow and transport properties: a review with new developments. Vadose Zone J 7:843–864

    Article  Google Scholar 

  • Weiler M, Naef F (2003) An experimental tracer study of the role of macropores in infiltration in grassland soils. Hydrol Process 17:477–493

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viliam Novák .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Novák, V., Hlaváčiková, H. (2019). Modelling of Water Flow and Solute Transport in Soil. In: Applied Soil Hydrology. Theory and Applications of Transport in Porous Media, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-01806-1_21

Download citation

Publish with us

Policies and ethics