Advertisement

Kalman Filter and Linear State Estimations

  • Kumar Pakki Bharani Chandra
  • Da-Wei GuEmail author
Chapter

Abstract

As discussed in the earlier chapters, the system state contains vital information for control system analysis and design, but it is not always directly measurable. Control engineers will have to obtain the information of system states based on accessible information of the known system dynamics, inputs and outputs (measurements).

References

  1. Banavar RN, Speyer JL (1991) A linear-quadratic game approach to estimation and smoothing. In: 1991 American control conference, pp 2818–2822. IEEEGoogle Scholar
  2. Bandyopadhyay B, Fulwani D (2009) High-performance tracking controller for discrete plant using nonlinear sliding surface. IEEE Trans Ind Electron 56(9):3628–3637CrossRefGoogle Scholar
  3. Bandyopadhyay B, Deepak F, Kim K-S (2009) Sliding mode control using novel sliding surfaces, vol 392. Springer, BerlinGoogle Scholar
  4. Basar T (1991) Optimum performance levels for minimax filters, predictors and smoothers. Syst Control Lett 16(5):309–317MathSciNetCrossRefGoogle Scholar
  5. Biswas PP, Srivastava R, Ray S, Samanta AN (2009) Sliding mode control of quadruple tank process. Mechatronics 19(4):548–561CrossRefGoogle Scholar
  6. Chandra KPB (2013) Nonlinear state estimation algorithms and their applications. PhD thesis, University of LeicesterGoogle Scholar
  7. Cheng G, Peng K (2007) Robust composite nonlinear feedback control with application to a servo positioning system. IEEE Trans Ind Electron 54(2):1132–1140CrossRefGoogle Scholar
  8. Csorba M (1998) Simultaneous localisation and map building. PhD thesis, University of OxfordGoogle Scholar
  9. Durrant-Whyte H (2001) Introduction to estimation and the kalman filter. Aust Cent Field Robot 28(3):65–94Google Scholar
  10. Einicke GA, White LB (1999) Robust extended kalman filtering. IEEE Trans Signal Process 47(9):2596–2599CrossRefGoogle Scholar
  11. Eustice RM, Singh H, Leonard JJ, Walter MR (2006) Visually mapping the RMS Titanic: conservative covariance estimates for slam information filters. Int J Robot Res 25(12):1223–1242CrossRefGoogle Scholar
  12. Grimble MJ, El Sayed A (1990) Solution of the \(h_\infty \) optimal linear filtering problem for discrete-time systems. IEEE Trans Acoust Speech Signal Process 38(7):1092–1104Google Scholar
  13. Imtiaz SA, Roy K, Huang B, Shah SL, Jampana P (2006) Estimation of states of nonlinear systems using a particle filter. In: 2006 IEEE international conference on industrial technology, ICIT 2006, pp 2432–2437. IEEEGoogle Scholar
  14. Johansson KH (2000) The quadruple-tank process: a multivariable laboratory process with an adjustable zero. IEEE Trans Control Syst Technol 8(3):456–465CrossRefGoogle Scholar
  15. Johnsen JK, Allöwer F (2007) Interconnection and damping assignment passivity-based control of a four-tank system. In: Lagrangian and hamiltonian methods for nonlinear control 2006, pp 111–122. Springer, BerlinGoogle Scholar
  16. Julier SJ, Uhlmann JK (2004) Unscented filtering and nonlinear estimation. Proc IEEE 92(3):401–422CrossRefGoogle Scholar
  17. Kailath T (1968) An innovations approach to least-squares estimation-part i: linear filtering in additive white noise. IEEE Trans Autom Control 13(6):646–655CrossRefGoogle Scholar
  18. Kailath T, Sayed AH, Hassibi B (2000) Linear estimation, vol 1. Prentice Hall, Upper Saddle RiverzbMATHGoogle Scholar
  19. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82(1):35–45CrossRefGoogle Scholar
  20. Kolmogorov AN, Doyle WL, Selin I (1962) Interpolation and extrapolation of stationary random sequences. Bulletin of academic sciences, Mathematics series, USSR, vol 5, 1941. Translation by W. Doyle and J. Selin, RM-3090-PR, Rand Corporation, Santa Monica, CaliforniaGoogle Scholar
  21. Mercangöz M, Doyle FJ (2007) Distributed model predictive control of an experimental four-tank system. J Process Control 17(3):297–308CrossRefGoogle Scholar
  22. Mutambara AG (1998) Decentralized estimation and control for multisensor systems. CRC press, Boca RatonzbMATHGoogle Scholar
  23. Napgal K, Khargonekar P (1991) Filtering and smoothing in an h-infinity setting. IEEE Trans Autom Control 36:152–166CrossRefGoogle Scholar
  24. Okpanachi AV (2010) Developing advanced control strategies for a 4-tank laboratory process. Master’s thesis reportGoogle Scholar
  25. Park P, Kailath T (1995) New square-root algorithms for kalman filtering. IEEE Trans Autom Control 40(5):895–899MathSciNetCrossRefGoogle Scholar
  26. Raff T, Huber S, Nagy ZK, Allgower F (2006) Nonlinear model predictive control of a four tank system: an experimental stability study. In: 2006 IEEE international conference on control applications, CCA’06, pp 237–242. IEEEGoogle Scholar
  27. Said SH, M’Sahli F (2008) A set of observers design to a quadruple tank process. In: 2008 IEEE international conference on control applications, CCA 2008, pp 954–959. IEEEGoogle Scholar
  28. Shaked U (1990) \(h_\infty \)-minimum error state estimation of linear stationary processes. IEEE Trans Autom Control 35(5):554–558MathSciNetCrossRefGoogle Scholar
  29. Shen X-M, Deng L (1997) Game theory approach to discrete \(h_\infty \) filter design. IEEE Trans Signal Process 45(4):1092–1095CrossRefGoogle Scholar
  30. Simon D (2006) Optimal state estimation: Kalman, H infinity, and nonlinear approaches. Wiley, New YorkCrossRefGoogle Scholar
  31. Utkin V, Guldner J, Shi J (2009) Sliding mode control in electro-mechanical systems, vol 34. CRC press, Boca RatonCrossRefGoogle Scholar
  32. Vadigepalli R, Gatzke EP, Doyle FJ (2001) Robust control of a multivariable experimental four-tank system. Ind Eng Chem Res 40(8):1916–1927CrossRefGoogle Scholar
  33. Van Der Merwe R (2004) Sigma-point kalman filters for probabilistic inference in dynamic state-space modelsGoogle Scholar
  34. Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time series, vol 7. MIT press, CambridgezbMATHGoogle Scholar
  35. Yaesh I, Shaked U (1992) Game theory approach to optimal linear state estimation and its relation to the minimum \(h_\infty \) norm estimation. IEEE Trans Autom Control 37(6):828–831MathSciNetCrossRefGoogle Scholar
  36. Yang F, Wang Z, Lauria S, Liu X (2009) Mobile robot localization using robust extended h8 filtering. Proc Inst Mech Eng Part I J Syst Control Eng 223(8):1067–1080CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.GMR Institute of TechnologyRajamIndia
  2. 2.Department of EngineeringUniversity of LeicesterLeicesterUK

Personalised recommendations