Cancer Diagnostics and Therapeutics

  • Uma Prabhakar
  • Yalia Jayalakshmi
  • C. Katherine Wang
Part of the Bioanalysis book series (BIOANALYSIS, volume 5)


Cancer is the second most common cause of death in the USA exceeded only by heart disease. Over the past several decades, novel targets and innovative approaches have been initiated and developed resulting in the approval of a significant number of new drugs for the treatment of various cancers and better and improved treatment options, leading to longer survival and better quality of life for the large number of patients diagnosed with the disease each year. In addition to novel and better treatment advances, strides in cancer prevention, together with diagnostics and companion diagnostics development, as well as state-of-the-art personalized medicine approaches to stratify patients more likely to benefit from specific treatment, have contributed to the fight against cancer. In this chapter, clinical advances in diagnostics and therapeutics that have impacted cancer treatment and care will be discussed. Further, the future approaches and strategies including improvements in diagnosis, treatment, and drug delivery that will continue to impact the development of this field are explored while highlighting the opportunities and challenges associated with novel approaches and platforms for both diagnostics and therapeutics.


Cancer therapeutics Cancer diagnostics Companion diagnostics Biomarkers Cancer detection Diagnostic imaging Imaging modalities Molecular imaging Liquid biopsy Genetic sequencing Machine learning Cancer treatment approaches Chemotherapeutics Radiation therapy Targeted therapies Immunotherapies Monoclonal antibodies Immune checkpoint inhibitors Cancer vaccines CAR-T Gene therapy Stem cell transplantation Nanoparticles Drug delivery approaches FDA 


  1. 1.
    American Cancer Society: Cancer Facts & Figures 2016. American Cancer Society, Atlanta (2016)Google Scholar
  2. 2.
    Masters, G.A., et al.: Clinical cancer advances 2015: annual report on progress against cancer from the American Society of Clinical Oncology. J. Clin. Oncol. 33(7), 786–809 (2015)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Goossens, N., et al.: Cancer biomarker discovery and validation. Transl. Cancer Res. 4(3), 256–269 (2015)Google Scholar
  5. 5.
    Biomarker Toolkit: companion diagnostics. Amgen. Retrieved 2 May 2014Google Scholar
  6. 6.
    de Gramont, A., Watson, S., et al.: Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat. Rev. Clin. Oncol. 12, 197–212 (2015)CrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
    Singer, D.S., et al.: A U.S. “Cancer Moonshot” to accelerate cancer research Science 10.1126/science.aai. 7862 (2016)Google Scholar
  10. 10.
    Brooks, J.D.: Translational genomics: the challenge of developing cancer biomarkers. Genome Res. 22, 183–187 (2012)CrossRefGoogle Scholar
  11. 11.
    Henry, N.L., Hayes, D.F.: Cancer biomarkers. Mol. Oncol. 6, 140–146 (2012)CrossRefGoogle Scholar
  12. 12.
    Kelloff, G.J., Sigman, C.C.: Cancer biomarkers: selecting the right drug for the right patient. Nat. Rev. Drug Discov. 11, 201–214 (2012)CrossRefGoogle Scholar
  13. 13.
    Kulasingam, V., Diamandis, E.P.: Strategies for discovery novel cancer biomarkers through utilization of emerging technologies. Nat. Clin. Pract. Oncol. 5, 588–599 (2008)CrossRefGoogle Scholar
  14. 14.
    Thakor, A.S., Gambhir, S.S.C.A.: Nanooncology: the future of cancer diagnosis and therapy. Cancer J. Clin. 63, 395–418 (2013)CrossRefGoogle Scholar
  15. 15.
    Füzéry, A.K., Levin, J., et al.: Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin. Proteomics. 10(13), 1–14 (2013)Google Scholar
  16. 16.
    Weissleder, R., Pittet, M.J.: Review article imaging in the era of molecular oncology. Nature. 452, 589 (2008)CrossRefGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
  20. 20.
    Falconnet, D., She, J., et al.: Rapid, sensitive and real-time multiplexing platform for the analysis of protein and nucleic-acid biomarkers. Anal. Chem. 87, 1582–1589 (2015)CrossRefGoogle Scholar
  21. 21.
    Simon, A.B., Frampton, J.P., et al.: Aqueous two-phase systems enable multiplexing of homogeneous immunoassays. Technology. 2, 176–184 (2014)CrossRefGoogle Scholar
  22. 22.
    Ostendorff, H.P., Awad, A., et al.: Multiplexed VeraCode bead-based serological immunoassay for colorectal cancer. J. Immunol. Methods. 400-401, 58–69 (2013)CrossRefGoogle Scholar
  23. 23.
    Baker, H.N., Murphy, R., et al.: Conversion of capture ELISA to a Luminez xMAP assay using a multiplex antibody screening method. J. Vis. Exp. 62(e4084), 1–7 (2012)Google Scholar
  24. 24.
    Spindel, S., Sapsford, K.E.: Evaluation of optical detection platforms for multiplexed detection of proteins and the need for point-of-care biosensors for clinical use. Sensors. 14, 22313–22341 (2014)CrossRefGoogle Scholar
  25. 25.
    Dinish, U.S., Balasundaram, G., et al.: Actively targeted In Vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci. Rep. 4, 1–7 (2014)Google Scholar
  26. 26.
    Rusling, J.F.: Multiplexed electrochemical protein detection and translation to personalized cancer diagnostics. Anal. Chem. 85, 5304–5310 (2013)CrossRefGoogle Scholar
  27. 27.
    Chikkaveeraiah, B.V., Bhirde, A., et al.: Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano. 6, 6546–6561 (2012)CrossRefGoogle Scholar
  28. 28.
    Wittman, J., Jäck, H.-M.: Serum microRNAs as powerful cancer biomarkers. Biochim. Biophys. Acta. 1806, 200–207 (2010)Google Scholar
  29. 29.
    Etheridge, A., Lee, I., et al.: Extracellular microRNA: a new source of biomarkers. Mutat. Res. 717, 85–90 (2011)CrossRefGoogle Scholar
  30. 30.
    Hayes, J., Peruzzi, P.P., Lawler, S.: MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med. 20, 460–469 (2014)CrossRefGoogle Scholar
  31. 31.
    Tiberio, P., Callari, M., et al.: Challenges in using circulating miRNAs as cancer biomarkers. Biomed. Res. Int. 2015, 731479, 1–10 (2015)CrossRefGoogle Scholar
  32. 32.
    Majem, B., Rigau, M., et al.: Non-coding RNAs in saliva: emerging biomarkers for molecular diagnostic. Int. J. Mol. Sci. 16, 8676–8696 (2015)CrossRefGoogle Scholar
  33. 33.
    Yarmishyn, A.A., Kurochkin, I.V.: Long noncoding RNAs: a potential novel class of cancer biomarkers. Front. Genet. 6, 145, 1–10 (2015)CrossRefGoogle Scholar
  34. 34.
    Warton, K., Samimi, G.: Methylation of cell-free circulating DNA in the diagnosis of cancer. Front. Mol. Res. 2(13), 1–10 (2015)Google Scholar
  35. 35.
    Krebs, M.G., Metcalf, R.L., et al.: Molecular analysis of circulating tumour cells—biology and biomarkers. Nat. Rev. Clin. Oncol. 11, 129–144 (2015)CrossRefGoogle Scholar
  36. 36.
    Brock, G., Castellanos-Rizaldos, E., et al.: Liquid biopsy for cancer screening, patient stratification and monitoring. Transl. Cancer Res. 4(3), 280–290 (2015)Google Scholar
  37. 37.
    Roschewski, M., Staudt, L.M., et al.: Dynamic monitoring of circulating tumor DNA in non-Hodgkin lymphoma. Blood. 127(25), 3127–3132 (2016)CrossRefGoogle Scholar
  38. 38.
    Hocking, J., Mithraprabhu, S., et al.: Liquid biopsies for liquid tumors: emerging potential of circulating free nucleic acid evaluation for the management of hematologic malignancies. Cancer Biol. Med. 13(2), 215–225 (2016)CrossRefGoogle Scholar
  39. 39.
    Santiago-Dieppa, D.R., Steinberg, J., et al.: Extracellular vesicles as platform for ‘liquid biopsy’ in glioblastoma patients. Expert Rev. Mol. Diagn. 14(7), 819–825 (2014)CrossRefGoogle Scholar
  40. 40.
    Tsujiura, M., Ichikawa, D., et al.: Liquid biopsy of gastric cancer patients: circulating tumor cells and cell-free nucleic acids. World J. Gastroenterol. 20(12), 3265–3286 (2014)CrossRefGoogle Scholar
  41. 41.
    Toledo, R.A., Cubillo, A., et al.: Clinical validation of prospective liquid biopsy monitoring in patients with wild-type RAS metastatic colorectal cancer treated with FOLFIRI-cetuximab. Oncotarget. (2016).
  42. 42.
    Brock, G., Castellanos-Rizaldos, E., et al.: Liquid biopsy for cancer screening, patient stratification and monitoring. Trans. Cancer Res. 4(3), 280–290 (2015)Google Scholar
  43. 43.
    Labgaa, I., Villanueva, A.: Liquid biopsy in liver cancer. Discov. Med. 19(105), 263–273 (2015)Google Scholar
  44. 44.
    Heitzer, E., Ulz, P., et al.: Circulating tumor DNA as a liquid biopsy for cancer. Clin. Chem. 61(1), 112–123 (2015)CrossRefGoogle Scholar
  45. 45.
    Hegemann, M., Stenzl, A., et al.: Liquid biopsy: ready to guide therapy in advanced prostate cancer? BJU Int. 118(6), 855–863 (2016)CrossRefGoogle Scholar
  46. 46.
    Imamura, T., Komatsu, S., et al.: Liquid biopsy in patients in pancreatic cancer: circulating tumor cells and cell-free nucleic acids. World J. Gastroenterol. 22(25), 5627–5641 (2016)CrossRefGoogle Scholar
  47. 47.
  48. 48.
    Friedmann, A.A., Letai, A., et al.: Precision medicine for cancer with next-generation functional diagnostics. Nat. Rev. Cancer. 15(12), 747–756 (2015)CrossRefGoogle Scholar
  49. 49.
    Crystal, A.S., et al.: Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science. 346, 1480–1486 (2014)CrossRefGoogle Scholar
  50. 50.
    Konrou, K., Exarchos, T.P., et al.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17 (2015)CrossRefGoogle Scholar
  51. 51.
    Jabir, N.R., Tabrez, S., et al.: Nanotechnology-based approaches in anticancer research. Int. J. Nanomedicine. 7, 4391–4408 (2012)Google Scholar
  52. 52.
    Krishnan, S.R., George, S.K.: Nanotherapeutics in cancer prevention, diagnosis and treatment. In: Gowder, S.J.T. (ed.) Chapter 8 in book: Phamacology and Therapeutics (2014). ISBN 978-953-51-1620-1622Google Scholar
  53. 53.
    Gorin, B., Tuttle, E.: Advanced diagnostics: innovation, reimbursement, and coverage challenges. IN VIVO: The Business & Medicine Report – 1–4 (2014)
  54. 54.
    La, H., Cheng, L., Pan, C.X.: Personalized medicine in oncology and companion diagnostics: development and challenges. Transl. Med. 3(1), 1000e121, 1-4 (2013)Google Scholar
  55. 55.
  56. 56.
    Goodman and Gillman’s Pharmacological basis of therapeutics, 12th Ed, 2010, Section 8 (Chemotherapy of neoplastic diseases), chapters 60-64Google Scholar
  57. 57.
    Mukherji, S.: The Emperor of All Maladies, A Biography of Cancer. Scribner, New York (2010)Google Scholar
  58. 58.
  59. 59.
  60. 60.
  61. 61.
  62. 62.
    Foo, J., Michor, F.: Evolution of acquired resistance to anti-cancer therapy. J. Theor. Biol. 355, 10–120 (2014)CrossRefGoogle Scholar
  63. 63.
    Shefet-Carasso, L., Benhar, I.: Antibody-targeted drugs and drug resistant challenges and solutions. Drug Resist. Updat. 18, 36–46 (2015)CrossRefGoogle Scholar
  64. 64.
    Mahato, R., Tai, W., et al.: Prodrugs for improving tumor targetability and efficiencY. Adv. Drug Deliv. Rev. 63, 659–670 (2011)CrossRefGoogle Scholar
  65. 65.
    Perez, E.A., Awada, A., et al.: Irinotecan pegol (NKTR-102) versus treatment of physician's choice in women with advanced breast cancer previously treated with an anthracycline, a taxane, and capecitabine (BEACON): a randomized, open-label, multicenter, phase 3 trial. Lancet Oncol. 16(15), 1556–1568 (2015)CrossRefGoogle Scholar
  66. 66.
    Cabral, H., Kataoka, K.: Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Release. 190, 465–476 (2014)CrossRefGoogle Scholar
  67. 67.
    Hanahan, D., Weinberg, R.: Hallmarks of cancer: the next generation. Cell. 144(5), 646–674 (2011)CrossRefGoogle Scholar
  68. 68.
  69. 69.
    Scott, A.M., Wolchok, A.D., et al.: Antibody therapy of cancer. Nat. Rev. Cancer. 12, 278–287 (2012)CrossRefGoogle Scholar
  70. 70.
    Imai, K., Takaoka, K.: Comparing antibody and small-molecule therapies for cancer. Nat. Rev. Cancer. 6, 714–727 (2006)CrossRefGoogle Scholar
  71. 71.
    Ecker, D.M., Jones, S.D., Levine, H.L.: The therapeutic monoclonal antibody market mAbs 7:1, 9-14 ©2015 Bioprocess Technology Consultants (2015)Google Scholar
  72. 72.
  73. 73.
    Iamele, L., Vecchio, L., Scotti, C.: Antibody-drug conjugates: targeted weapons against cancer. Antibody Technol. J. 5, 1–13 (2015)Google Scholar
  74. 74.
    Papachristos, A., Pippa, N., et al.: Antibody-drug conjugates: a mini-review. The synopsis of two approved medicines. Drug Deliv. 23, 1662–1666 (2016)Google Scholar
  75. 75.
    Peters, C., Stuart, B.: Antibody–drug conjugates as novel anti-cancer chemotherapeutic. Biosci. Rep. 35, 1–20 (2015)CrossRefGoogle Scholar
  76. 76.
    Petrelli, F., et al.: Relationship between skin rash and outcome in non-small-cell lung cancer patients treated with anti-EGFR tyrosine kinase inhibitors: A literature-based meta-analysis of 24 trials. Lung Cancer. 78(1), 8–15 (2012)CrossRefGoogle Scholar
  77. 77.
    Liu, J.H.K.: The history of monoclonal antibody development - Progress, remaining challenges and future innovations. Ann. Med. Surg. 3(4), 113–116 (2014)CrossRefGoogle Scholar
  78. 78.
    Beck, A., Wurch, T., et al.: Strategies and challenges for the next generation of therapeutic antibodies. Nat. Rev. Immunol. 10, 345–352 (2010)CrossRefGoogle Scholar
  79. 79.
    Glennie, M.J., Frenchm, R.R., et al.: Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol. Immunol. 44, 3823–3927 (2007)CrossRefGoogle Scholar
  80. 80.
    Mullard, A.: 2014 FDA drug approvals: FDA approves first bispecific. Nat. Rev. Drug Discov. 14, 77–81 (2015)CrossRefGoogle Scholar
  81. 81.
    Kontermann, R.E., Brinkmann, U.: Bispecific antibodies: review article. Drug Discov. Today. 20, 838–847 (2015)CrossRefGoogle Scholar
  82. 82.
    Honeychurch, J., Cheadle, E.J., et al.: Immuno-regulatory antibodies for the treatment of cancer. Expert Opin. Biol. Ther. 15, 787–801 (2015)CrossRefGoogle Scholar
  83. 83.
    Khalil, D.N., Smith, E.L., et al.: Future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 13(5), 273–290 (2016)CrossRefGoogle Scholar
  84. 84.
    Khalil, D.N., Budhu, S., et al.: The new era of cancer immunotherapy: manipulating T-cell activity to overcome malignancy. Adv. Cancer Res. 128, 1–68 (2015)CrossRefGoogle Scholar
  85. 85.
  86. 86.
    Dolan, D.E., Gupta, S.: PD-1 pathway inhibitors: changing the landscape of cancer immunotherapy. Cancer. 21(3), 231–237 (2014)Google Scholar
  87. 87.
    Brahmer, J., Reckamp, K.L., et al.: Nivolumab versus Docetaxel in advanced squamous-cell non–small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015)CrossRefGoogle Scholar
  88. 88.
    Larkin, J., Chiarion-Sileni, R., et al.: Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 373, 23–34 (2015)CrossRefGoogle Scholar
  89. 89.
    Robert, L., Ribas, A., Hu-Lieskovan, S.: Combining targeted therapy with immunotherapy. Can 1+1 equal more than 2? Semin. Immunol. 28(1), 73–80 (2016)CrossRefGoogle Scholar
  90. 90.
    Mahoney, K.M., Rennert, P.D., Freeman, G.J.: Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14(8), 561–584 (2016)CrossRefGoogle Scholar
  91. 91.
  92. 92.
    Pileth, J.: PD-1 / PD-L1 combination therapies. Eval. Pharma. (2015) (November), 3–16Google Scholar
  93. 93.
    Gangadhar, T.C., Vonderheide, R.H.: Mitigating the toxic effects of anticancer immunotherapy. Nat. Rev. Clin. Oncol. 11(2), 91–99 (2014)CrossRefGoogle Scholar
  94. 94.
    Lee, S., Margolin, K.: Cytokines in cancer immunotherapy. Cancer. 3(4), 3856–3893 (2011)CrossRefGoogle Scholar
  95. 95.
    Kumar, S., Chandra, D.: A therapeutic perspective of cytokines in tumor management. Inflamm. Cell Signal. e159, 1–5 (2014)Google Scholar
  96. 96.
    Lollini, P.L., Cavallo, F., et al.: The promise of preventive cancer vaccines. Vaccine. 3(2), 467–489 (2015)CrossRefGoogle Scholar
  97. 97.
    Guo, C., Manjili, M.H., et al.: Therapeutic cancer vaccines: past, present and future. Adv. Cancer Res. 119, 421–447 (2013)CrossRefGoogle Scholar
  98. 98.
    Melero, I., Guadernack, G., et al.: Therapeutic vaccines for cancer: an overview of clinical trials. Nat. Rev. Clin. Oncol. 11, 509–524 (2014)CrossRefGoogle Scholar
  99. 99.
    Kaufman, H.L., Kohlhapp, F.J., et al.: Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug Discov. 14, 642–662 (2015)CrossRefGoogle Scholar
  100. 100.
    Andtbacka, R.H.I., Kaufman, H.L., et al.: Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33(25), 2780–2788 (2015)CrossRefGoogle Scholar
  101. 101.
    Review of FDA hematology/oncology approvals from March 2013 to September 13, 2015
  102. 102.
    Zamarin, D., Holmgaard, R.B., et al.: Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci. Transl. Med. 6(226), 226ra32 (2014)CrossRefGoogle Scholar
  103. 103.
    Rojas, J., et al.: Defining effective combinations of immune checkpoint blockade and oncolytic virotherapy. Clin. Cancer Res. 21, 5543–5551 (2015)CrossRefGoogle Scholar
  104. 104.
    Gill, S., June, C.H.: Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol. Rev. 263(1), 68–89 (2015)CrossRefGoogle Scholar
  105. 105.
    Flemming, A.: CARs: new models abound. Nat. Rev. Drug Discov. 15, 157 (2016)CrossRefGoogle Scholar
  106. 106.
    Maude, S.L., Teachy, D.T., et al.: CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 125, 4017–4023 (2015)CrossRefGoogle Scholar
  107. 107.
    Collins, M., Thrasher, A.: Gene therapy: progress and predictions. Proc. R. Soc. B. 282, 1–8 (2015)CrossRefGoogle Scholar
  108. 108.
    Thomas, C.E., Ehrhardt, A., Kay, M.A.: Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4, 346–358 (2003)CrossRefGoogle Scholar
  109. 109.
    Yin, H., Kanasty, R.L., et al.: Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014)CrossRefGoogle Scholar
  110. 110.
    Amer, M.H.: Gene therapy for cancer: present status and future perspective. Mol. Cell Ther. 2014(2), 27 (2014)CrossRefGoogle Scholar
  111. 111.
    Wirth, T., Parker, N., Yia-Hertualla, S.: History of gene therapy. Gene. 525(2), 162–169 (2013)CrossRefGoogle Scholar
  112. 112.
    Naldini, L.: Gene therapy returns to center stage. Nature. 526, 351–360 (2015)CrossRefGoogle Scholar
  113. 113.
    Rosenberg, S.A., Aebersoid, P., et al.: Gene transfer into humans--immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med. 323(9), 570–578 (1990)CrossRefGoogle Scholar
  114. 114.
    Ginn, S.L., Alexander, I.E., et al.: Gene therapy clinical trials worldwide to 2012 – an update. J. Gene Med. 15(2), 65–77 (2013)CrossRefGoogle Scholar
  115. 115.
  116. 116.
    Cicalese, M.P., Ferrua, F., et al.: Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood. 128(1), 45–54 (2016)CrossRefGoogle Scholar
  117. 117.
  118. 118.
    Fire, A., Xu, S., et al.: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391(6669), 806–811 (1998)CrossRefGoogle Scholar
  119. 119.
    Whitehead, K.A., Langer, R., Anderson, D.G.: Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009)CrossRefGoogle Scholar
  120. 120.
    Williford, J.M., Wu, J., et al.: Recent Advances in Nanoparticle-Mediated siRNA Delivery. Annu. Rev. Biomed. Eng. 16, 347–370 (2014)CrossRefGoogle Scholar
  121. 121.
    Eric Bender, Second coming of RNAi, 2014, The Scientist (September),
  122. 122.
  123. 123.
    Davis, M.E., Zuckerman, J.E., et al.: Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 464, 1067–1070 (2010)CrossRefGoogle Scholar
  124. 124.
    Maeder, M.L., Gersbach, C.A.: Genome-editing technologies for gene and cell therapy. Mol. Ther. 24, 430–436 (2016)CrossRefGoogle Scholar
  125. 125.
    Prakash, V., Moore, M.M., Yáñez-Muñoz, R.J.: Current progress in therapeutic gene editing for monogenic diseases. Mol. Ther. 24(3), 465–446 (2016)CrossRefGoogle Scholar
  126. 126.
    Jinek, M., Chylinski, K., et al.: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337(6096), 816–821 (2012)CrossRefGoogle Scholar
  127. 127.
    Lander, E.S.: The heroes of CRISPR. Cell. 164, 18–28 (2016)CrossRefGoogle Scholar
  128. 128.
  129. 129.
    Savic/, N., Schwank, G.: Advances in therapeutic CRISPR/Cas9 genome editing. Transl. Res. 168, 15–21 (2016)CrossRefGoogle Scholar
  130. 130.
    Munoz, J., Shah, N., et al.: Concise review: umbilical cord blood transplantation: past, present, and future. Stem Cells Transl. Med. (12), 1435–1443 (2014)CrossRefGoogle Scholar
  131. 131.
    Stewart, B.W., ed.: World cancer report. ISBN-13 (Print Book) 978-92-832-0429-9 (2014)Google Scholar
  132. 132.
    Wicki, A., Witzigmann, D., et al.: Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control. Release. 299, 138–157 (2015)CrossRefGoogle Scholar
  133. 133.
    Lizotte, P.H., et al.: In situ vaccination with cowpea mosaic virus nanoparticle suppresses metastatic cancer. Nat. Nanotechnol. 11(3), 295–303 (2016)CrossRefGoogle Scholar
  134. 134.
    Duncan, R., Gasper, R.: Nanomedicine(s) under the microscope. Mol. Pharm. 8(6), 2101–2141 (2011)CrossRefGoogle Scholar
  135. 135.
    Gabizon, A., Bradbury, M., et al.: Cancer nanomedicines: closing the translational gap. Lancet. 384(9961), 2175–2176 (2014)CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Uma Prabhakar
    • 1
  • Yalia Jayalakshmi
    • 2
  • C. Katherine Wang
    • 3
  1. 1.Formerly of Office of Cancer Nanotechnology Research, NCIBethesdaUSA
  2. 2.C2CBio ConsultingSunnyvaleUSA
  3. 3.Formerly of BRIM BiotechnologyTaipeiTaiwan

Personalised recommendations