Advertisement

Study of Effectiveness of Treatment by Nanolime of the Altered Calcarenite Stones of the Archeological Site of Volubilis Site (Morocco)

  • Dalal Badreddine
  • Kévin Beck
  • Xavier Brunetaud
  • Ali Chaaba
  • Muzahim Al-Mukhtar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11196)

Abstract

Volubilis is the major archaeological site of North Africa, built in the 3rd century B.C. Unfortunately, the city, classified as a UNESCO world heritage, is affected by several forms of degradation that threaten its sustainability and durability. The main stone of the site, the calcarenite stone, shows many deterioration patterns (sanding, scaling and alveolization) that require immediate interventions of consolidation. In this paper, we subjected stone samples to artificial aging to simulate actual alteration. Then, degraded samples have been treated with commercial nanolime (CaloSil). Nanolime treatment proved to be efficient to recover most of the damage resulting from artificial aging, but also generated a change in color. Using a less concentrated nanolime could limit the aesthetic impact of the treatment.

Keywords

Artificial aging Nanolime Consolidant Volubilis 

References

  1. 1.
    UNESCO, Inscription: site archéologique de Volubilis, Maroc (1997). http://whc.unesco.org/archive/1997/whc-97-conf208-17f.pdf
  2. 2.
    Al-Mukhtar, M., et al.: Preservation and valorisation of Morocco’s ancient heritage: Volubilis. In: Ioannides, M., Fink, E., Moropoulou, A., Hagedorn-Saupe, M., Fresa, A., Liestøl, G., Rajcic, V., Grussenmeyer, P. (eds.) EuroMed 2016. LNCS, vol. 10059, pp. 160–167. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48974-2_18CrossRefGoogle Scholar
  3. 3.
    Dessandier, D., et al.: Atlas of the ornamental and building stones of Volubilis ancient site (Morocco). In: BRGM (2008)Google Scholar
  4. 4.
    ICOMOS-ISCS, Illustrated glossary on stone deterioration patterns, https://www.icomos.org/publications/monuments_and_sites/15/pdf/Monuments_and_Sites_15_ISCS_Glossary_Stone.pdf (2010)
  5. 5.
    Aalil, I., Beck, K., Brunetaud, X., Cherkaoui, K., Chaaba, M., Al Mukhtar, M.: Deterioration analysis of building calcarenite stone in the House of Venus in the archaeological site of Volubilis (Morocco). Constr. Build. Mater. 125, 1127–1141 (2016)CrossRefGoogle Scholar
  6. 6.
    Borsoi, G., Lubelli, B., Van Hees, R., Veiga, R., Santos Silva, A.: Understanding the transport of nanolime consolidants within Maastricht limestone. J. Cult. Herit. 18, 242–249 (2016)CrossRefGoogle Scholar
  7. 7.
    Ferreira Pinto, A.P., Delgado, R.J.: Stone consolidation: the role of treatment procedures. J. Cult. Herit. 9, 38–53 (2008)CrossRefGoogle Scholar
  8. 8.
    Hansen, E., et al.: A review of selected inorganic consolidants and protective treatments for porous calcareous materials. Rev. Conserv. 4, 13–25 (2003)Google Scholar
  9. 9.
    D’Armada, P., Hirst, E.: Nanolime for consolidation of plaster and stone. J. Archit. Conserv. 18(1), 63–80 (2012)CrossRefGoogle Scholar
  10. 10.
    Borsoi, G., Tavares, M., Veiga, R., Santos Silva, A.: Microstructural characterization of consolidant products for historical renders: an innovative nanostructured lime dispersion and a more traditional ethyl silicate limewater solution. Microsc. Microanal. 18(5), 1181–1189 (2012)CrossRefGoogle Scholar
  11. 11.
    Giorgi, R., Dei, L., Baglioni, P.: A new method for consolidating wall paintings based on dispersions of lime in alcohol. Stud. Conserv. 45(3), 154–161 (2000)Google Scholar
  12. 12.
    Borsoi, G., Lubelli, B., Van Hees, R., Veiga, R., Santos Silva, A.: Application protocol for the consolidation of calcareous substrates by the use of nanolimes: from laboratory research to practice. Restor. Build. Monum. 22, 99–109 (2017)CrossRefGoogle Scholar
  13. 13.
    Slizkova, Z., Frankeova, D.: Consolidation of porous limestone with nanolime, laboratory study. In: 12th International Congress on the Deterioration and Conservation of Stone Columbia University, New York (2012)Google Scholar
  14. 14.
    Daehne, A., Herm, C.: Calcium hydroxide nanosols for the consolidation of porous building materials – results from EU-STONECORE. Herit. Sci. 1, 11 (2013)CrossRefGoogle Scholar
  15. 15.
    Aalil, I.: Contribution to the study of the built heritage: methods of diagnosis of the pathologies of structures and means of restoration. Case study: archeological site Volubilis in Morocco. Ph.D. thesis, University of Orleans (France) and University Moulay Ismail (Morocco) (2017)Google Scholar
  16. 16.
    NF EN 12370: Test methods for natural stones - Determination of resistance by salt crystallisation test (1999)Google Scholar
  17. 17.
    Doehne, E., Price, C.A.: Stone Conservation: An Overview of Current Research, 2nd edn. The Getty Institute, Los Angeles (2010)Google Scholar
  18. 18.
    Rodrigues, J.D., Grossi, A.: Indicators and ratings for the compatibility assessment of conservation actions. J. Cult. Herit. 8, 32–43 (2007)CrossRefGoogle Scholar
  19. 19.
    Niedoba, K., Slízková, Z., Frankeová, D., Lara Nunes, C., Jandejsek, I.: Modifying the consolidation depth of nanolime on Maastricht limestone. Constr. Build. Mater. 133, 51–56 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Dalal Badreddine
    • 1
    • 2
  • Kévin Beck
    • 1
  • Xavier Brunetaud
    • 1
  • Ali Chaaba
    • 2
  • Muzahim Al-Mukhtar
    • 1
  1. 1.LAME LaboratoryUniversity of OrleansOrléansFrance
  2. 2.ENSAM MeknèsUniversity of Moulay IsmailMeknesMorocco

Personalised recommendations