Advertisement

Insights into Insect Resistance in Pulse Crops: Problems and Preventions

  • Santisree ParankusamEmail author
  • Sricindhuri Katamreddy
  • Pradeep Reddy Bommineni
  • Pooja Bhatnagar-Mathur
  • Kiran K. Sharma
Chapter

Abstract

Globally, insect pests cause considerable damage to pulse crops. Hence developing broad-spectrum resistance against insect pests has been a major challenge to pulse growers and scientists. Traditionally, cultural practices and synthetic insecticides are being utilized for effective control of insect pests since ages. Apart from these, other strategies such as host plant resistance, insect-resistant transgenic crops, and IPM are also being used to manage the infestation in pulse crops. Though screening of genetic resources for insect resistance has been promising in some pulse crops, fertility barriers and linkage drag minimize the effective utilization of identified resistance in commercially viable crop breeding programs. In parallel, insect-resistant transgenic plants have been developed using various insecticidal proteins from various sources including Bacillus thuringiensis endotoxin, plant protease inhibitors, chitinases, alpha-amylase inhibitors, secondary metabolites, and vegetative insecticidal proteins (VIPs). Deploying transgenic plants with high levels of toxin expression by gene pyramiding is another practical option to delay the resistance development in insects. Nevertheless, the success achieved so far in managing insect pests is limited mainly due to the complex mechanisms underlying the defense strategies together with the lack of precision in screening techniques. Here, we discuss the recent progress and current status of studies toward developing resistance to the most common insect pests of pulses. This chapter points the lack of detailed molecular studies exploring the insect resistance that can advance our knowledge on plant resistance mechanisms and the genes involved. Therefore, a step forward now will be on exploiting natural variations with novel technologies in combination of eco-safe management practices to develop durable insect-resistant pulse crops. Despite technical and regulatory difficulties, developing insect resistance should be the major priority area for future breeding and genetic engineering studies aiming at pulse crop improvement.

Keywords

Insect resistance Pulse crops Pest control Integrated pest management Cry genes: Bacillus thuringiensis 

Notes

Acknowledgments

This work was supported by a financial grant to PS through the INSPIRE Faculty Award (IFA12-LSPA-08) from the Department of Science and Technology, Government of India, and partial funding from the CGIAR Research Program on Grain Legumes.

References

  1. Acharjee S, Sarmah BK, Kumar PA, Olsen K, Mahon R, Moar WJ et al (2010) Transgenic chickpeas (Cicer arietinum L.) expressing a sequence-modified cry2Aa gene. Plant Sci 178(3):333–339CrossRefGoogle Scholar
  2. Adesoye A, Machuka J, Togun A (2008) CRY 1AB trangenic cowpea obtained by nodal electroporation. Afr J Biotechnol 7(18):3200–3210Google Scholar
  3. Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17(5):293–302PubMedCrossRefPubMedCentralGoogle Scholar
  4. Annis B, O’Keeffe LE (1984) Response of two Lathyrus species to infestation by the pea weevil Bruchus pisorum L.(Coleoptera: Bruchidae). Entomol Exp Appl 35(1):83–87CrossRefGoogle Scholar
  5. Asharani BM, Ganeshaiah KN, Kumar ARV, Makarla U (2011) Transformation of chickpea lines with Cry1X using in plantatransformation and characterization of putative transformants T1lines for molecular and biochemical characters. J Plant Breed Crop Sci 3:16413–16423CrossRefGoogle Scholar
  6. Asif M, Rooney LW, Ali R, Riaz MN (2013) Application and opportunities of pulses in food system – a review. Crit Rev Food Sci Nutr 53:1168–1179PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bakhsh A, Rao AQ, Shahid AA, Husnain T, Riazuddin S (2009) Insect resistance and risk assessment studies in advance lines of Bt cotton harboring Cry1Ac and Cry2A genes. Am Eurasian J Agric Environ Sci 6(1):1–11Google Scholar
  8. Bakhsh A, Khabbazi SD, Baloch FS, Demirel U, Çalişkan ME, Hatipoğlu R et al (2015) Insect-resistant transgenic crops: retrospect and challenges. Turk J Agric For 39(4):531–548CrossRefGoogle Scholar
  9. Baksh A (2003) Potential adverse health effects of genetically modified crops. J Toxicol Environ Health B Crit Rev 6:211–225CrossRefGoogle Scholar
  10. Bardner R, Fletcher KE (1974) Insect infestations and their effects on the growth and yield of field crops: a review. Bull Entomol Res 64(1):141–160CrossRefGoogle Scholar
  11. Beena MR, Tuli R, Gupta AD, Kirti PB (2008) Transgenic peanut (Arachis hypogaea L.) plants expressing cry1EC and rice chitinase cDNA (Chi11) exhibit resistance against insect pest Spodoptera litura and fungal pathogen Phaeoisariopsis personata. Trans Plant J 2:157–164Google Scholar
  12. Bhatnagar VS, Sithanantham S, Pawar CS, Jadhav D, Rao VR, Reed W (1983) Conservation and augmentation of natural enemies with reference to integrated pest management in chickpea (Cicer arietinum L.) and pigeonpea (Cajanus cajan (L.) Millsp). In: Proc International workshop on Integrated Pest Control in Grain legumes. Goiana, Brazil, pp. 157–180Google Scholar
  13. Bhatnagar-Mathur P, Sharma KK (2016) Genetic transformation of pigeonpea: an overview. Legum Perspect 11:35–36Google Scholar
  14. Bhushan S, Singh RP, Shanker R (2011) Bioefficacy of neem and Bt against pod borer, Helicoverpa armigera in chickpea. J Biopest 4(1):87–89Google Scholar
  15. Blair MW, Muñoz C, Buendía HF, Flower J, Bueno JM, Cardona C (2010) Genetic mapping of microsatellite markers around the arcelin bruchid resistance locus in common bean. Theor Appl Genet 121(2):393–402PubMedPubMedCentralCrossRefGoogle Scholar
  16. Boethel DJ (1999) Assessment of soybean germplasm for multiple insect resistance. In: Global plant genetic resources for insect-resistant crops. CRC, Boca Raton, pp 101–129Google Scholar
  17. Bruce TJ (2014) Interplay between insects and plants: dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. J Exp Bot 66(2):455–465PubMedCrossRefPubMedCentralGoogle Scholar
  18. Byrne O, Galwey N, Hardie D (2002) Searching for molecular markers for resistance to pea weevil. In: JA MC (ed) Plant breeding for the 11th milennium: proceedings of the 12th Australasian plant breeding conference. Australian Plant Breeding Association, Perth, pp 62–366Google Scholar
  19. Cao J, Ibrahim H, Garcia J, Mason H, Granados R, Earle E (2002) Transgenic tobacco plants carrying a baculovirus enhancin gene slow the development and increase the mortality of Trichoplusia ni larvae. Plant Cell Rep 21(3):244–250CrossRefGoogle Scholar
  20. Cardona C, Kornegay J (1999) Bean germplasm resources for insect resistance. In: Clement SL, Quisenberry SS (eds) Global plant genetic resources for insect-resistant crops. CRC Press LLC, Boca Raton, pp 85–100Google Scholar
  21. Carrillo E, Rubiales D, Pérez-de-Luque A, Fondevilla S (2013) Characterization of mechanisms of resistance against Didymella pinodes in Pisum spp. Eur J Plant Pathol 135(4):761–769CrossRefGoogle Scholar
  22. Casida JE, Quistad GB (1998) Golden age of insecticide research: past, present, or future? Annu Rev Entomol 43(1):1–16PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chakraborti D, Sarkar A, Mondal HA, Das S (2009) Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora. Transgenic Res 18(4):529–544PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chakraborty J, Sen S, Ghosh P, Sengupta A, Basu D, Das S (2016) Homologous promoter derived constitutive and chloroplast targeted expression of synthetic cry1Ac in transgenic chickpea confers resistance against Helicoverpa armigera. Plant Cell Tissue Organ Cult (PCTOC) 125(3):521–535CrossRefGoogle Scholar
  25. Charity JA, Anderson MA, Bittisnich DJ, Whitecross M, Higgins TJV (1999) Transgenic tobacco and peas expressing a proteinase inhibitor from Nicotiana alata have increased insect resistance. Mol Breed 5(4):357–365CrossRefGoogle Scholar
  26. Chaudhary RG, Saxena H, Dhar V, Prajapati RK (2008) Evaluation and validation of IPM modules against wilt, Phytophthora blight, pod borer and pod fly in pigeonpea. J Food Legum 21:58–60Google Scholar
  27. Chavan AP, Patil SK, Deshmukh GP, Pawar KB, Brahmane RO, Harar PN (2009) Sources of resistance to pigeonpea pod borers. In: International conference on grain legumes: quality improvement, value addition and trade. Indian Institute of Pulses Research, Kanpur, pp 256–257Google Scholar
  28. Chen KC, Lin CY, Kuan CC, Sung HY, Chen CS (2002a) A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid. J Agric Food Chem 50(25):7258–7263PubMedCrossRefPubMedCentralGoogle Scholar
  29. Chen JW, Tang LX, Tang MJ, Shi YX, Pang Y (2002b) Cloning and expression product of vip3A gene from Bacillus thuringiensis and analysis of inseceicidal activity. Sheng wu gong cheng xue bao. Chin J Biotechnol 18(6):687–692Google Scholar
  30. Chen HM, Liu CA, Kuo CG, Chien CM, Sun HC, Huang CC et al (2007) Development of a molecular marker for a bruchid (Callosobruchus chinensis L.) resistance gene in mungbean. Euphytica 157(1–2):113–122CrossRefGoogle Scholar
  31. Cherry AJ, Rabindra RJ, Parnell MA, Geetha N, Kennedy JS, Grzywacz D (2000) Field evaluation of Helicoverpaarmigeranucleopolyhedrovirus formulations for control of the chickpea pod-borer, H. armigera (Hubn.), on chickpea (Cicer arietinum var. Shoba) in southern India. Crop Prot 19(1):51–60CrossRefGoogle Scholar
  32. Chiang HS, Norris DM (1983) Morphological and physiological parameters of soybean resistance to agromyzid beanflies. Environ Entomol 12(1):260–265CrossRefGoogle Scholar
  33. Chiang HS, Singh SR (1988) Pod hairs as a factor in Vigna vexillata resistance to the pod-sucking bug, Clavigralla tomentosicollis. Entomol Exp Appl 47(2):195–199CrossRefGoogle Scholar
  34. Chowrira GM, Akella V, Fuerst PE, Lurquin PF (1996) Transgenic grain legumes obtained byin planta electroporation-mediated gene transfer. Mol Biotechnol 5(2):85–96PubMedCrossRefPubMedCentralGoogle Scholar
  35. Clement SL, Quisenberry SS (eds) (1999) Global plant genetic resources for insect-resistant crops. CRC Press, Boca Raton, p 295Google Scholar
  36. Clement SL, El-Din NEDS, Weigand S, Lateef SS (1993) Research achievements in plant resistance to insect pests of cool season food legumes. Euphytica 73(1–2):41–50CrossRefGoogle Scholar
  37. Clement SL, Wightman JA, Hardie DC, Bailey P, Baker G, McDonald G (2000) Opportunities for integrated management of insect pests of grain legumes. In: Linking research and marketing opportunities for pulses in the 21st century. Springer, Dordrecht, pp 467–480CrossRefGoogle Scholar
  38. Constabel CP, Yip L, Patton JJ, Christopher ME (2000) Polyphenol oxidase from hybrid poplar. Cloning and expression in response to wounding and herbivory. Plant Physiol 124(1):285–296PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dahiya SS, Chauhan YS, Johansen C, Shanower TG (1999) Adjusting pigeonpea sowing time to manage pod borer infestation. Int Chickpea Newsl 6:44–45Google Scholar
  40. Das SB (1998) Impact of intercropping on Helicoverpa armigera (hub.): incidence and crop yield of chickpea in west Nimar valley of Madhya Pradesh. Insect Environ 4:84–85Google Scholar
  41. Das A, Datta S, Thakur S, Shukla A, Ansari J, Sujayanand GK, Singh NP (2017) Expression of a chimeric gene encoding insecticidal crystal protein Cry1Aabc of Bacillus thuringiensis in Chickpea (Cicer arietinum L.) confers resistance to gram pod borer (Helicoverpa armigera Hubner.). Front Plant Sci 8:1423PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dayal S, Lavanya M, Devi P, Sharma KK (2003) An efficient protocol for shoot regeneration and genetic transformation of pigeonpea [Cajanus cajan (L.) Millsp.] using leaf explants. Plant Cell Rep 21(11):1072–1079PubMedCrossRefPubMedCentralGoogle Scholar
  43. De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393(6685):570CrossRefGoogle Scholar
  44. Dhaliwal GS, Dhaliwal GS (1993) Advances in host plant resistance to insects. Klayan Publishers, New DelhiGoogle Scholar
  45. Dicke M (1999) Direct and indirect effects of plants on performance of beneficial organisms. In: Handbook of pest management. Marcel Dekker, New York/Basel, pp 105–153Google Scholar
  46. Dodia DA, Patel AJ, Patel IS, Dhulia FK, Tikka SBS (1996) Antibiotic effect of pigeonpea wild relatives on Helicoverpa armigera. Int Chickpea Pigeonpea Newsl 3:100–101Google Scholar
  47. Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58(5):659–668PubMedCrossRefGoogle Scholar
  48. Edwards OR (2001) Interspecific and intraspecific variation in the performance of three pest aphid species on five grain legume hosts. Entomol Exp Appl 100(1):21–30CrossRefGoogle Scholar
  49. Edwards OR, Ridsdill-Smith TJ, Berlandier FA (2003) Aphids do not avoid resistance in Australian lupin (Lupinus angustifolius, L. luteus) varieties. Bull Entomol Res 93(5):403–411PubMedCrossRefGoogle Scholar
  50. Eizenberg H, Colquhoun J, Mallory-Smith C (2005) A predictive degree-days model for small broomrape (Orobanche minor) parasitism in red clover in Oregon. Weed Sci 53(1):37–40CrossRefGoogle Scholar
  51. Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci 93(11):5389–5394PubMedCrossRefGoogle Scholar
  52. Fabre C, Causse H, Mourey L, Koninkx J, Rivière M, Hendriks H (1998) Characterization and sugar-binding properties of arcelin-1, an insecticidal lectin-like protein isolated from kidney bean (Phaseolus vulgaris L. cv. RAZ-2) seeds. Biochem J 329(3):551–560PubMedPubMedCentralCrossRefGoogle Scholar
  53. Felton GW, Donato KK, Broadway RM, Duffey SS (1992) Impact of oxidized plant phenolics on the nutritional quality of dietar protein to a noctuid herbivore, Spodoptera exigua. J Insect Physiol 38(4):277–285CrossRefGoogle Scholar
  54. Ganguly M, Molla KA, Karmakar S, Datta K, Datta SK (2014) Development of pod borer-resistant transgenic chickpea using a pod-specific and a constitutive promoter-driven fused cry1Ab/Ac gene. Theor Appl Genet 127(12):2555–2565PubMedCrossRefPubMedCentralGoogle Scholar
  55. Ganiger PC (2000) Bioefficacy of newer insecticides against pod borer complex in pigeonpea Cajanuscajan L. MSc (Agri.) dissertation submitted to Marathwada Agricultural University, Parbhani, 66 ppGoogle Scholar
  56. Ghosh S, Azhahianambi P, Yadav MP (2007) Upcoming and future strategies of tick control: a review. J Vector Borne Dis 44(2):79PubMedPubMedCentralGoogle Scholar
  57. Giri AP, Kachole MS (1998) Amylase inhibitors of pigeonpea (Cajanus cajan) seeds. Phytochemistry 47(2):197–202PubMedCrossRefPubMedCentralGoogle Scholar
  58. Gnanamurthy S, Dhanavel D (2014) Effect of EMS on induced morphological mutants and chromosomal variation in Cowpea (Vigna unguiculata (L.) Walp). Int Let Nat Sci 17 17:33–43Google Scholar
  59. Godfrey J (2000) Do genetically modified foods affect human health? Lancet 355:414PubMedCrossRefPubMedCentralGoogle Scholar
  60. Gopali JB, Sharma OP, Yelshetty S (2013) Effect of insecticides and biorationals against pod bug (Clavigralla gibbosa) in pigeonpea. Indian J Agric Sci 83(5):582–585Google Scholar
  61. Green PWC, Stevenson PC, Simmonds MSJ, Sharma HC (2002) Can larvae of the pod-borer, Helicoverpa armigera (Lepidoptera: Noctuidae), select between wild and cultivated pigeonpea Cajanus sp. (Fabaceae)? Bull Entomol Res 92(1):45–51PubMedCrossRefPubMedCentralGoogle Scholar
  62. Gujar GT, Kumari A, Kalia V, Chandrashekar K (2000) Spatial and temporal variation in susceptibility of the American bollworm, Helicoverpa armigera (Hubner) to Bacillus thuringiensis var. kurstaki in India. Curr Sci:995–1001Google Scholar
  63. Gulati A, Schryer P, McHughen A (2002) Production of fertile transgenic lentil (Lens culinaris Medik) plants using particle bombardment. In Vitro Cell Dev Biol Plant 38(4):316–324CrossRefGoogle Scholar
  64. Gunning RV, Moores GD, Devonshire AL (1998) Insensitive acetylcholinesterase and resistance to organophosphates in Australian Helicoverpa armigera. Pestic Biochem Physiol 62(3):147–151CrossRefGoogle Scholar
  65. Harrison RL, Bonning BC (2001) Use of proteases to improve the insecticidal activity of baculoviruses. Biol Control 20(3):199–209CrossRefGoogle Scholar
  66. Heil M (2004) Induction of two indirect defences benefits Lima bean (Phaseolus lunatus, Fabaceae) in nature. J Ecol 92(3):527–536CrossRefGoogle Scholar
  67. Higgins TJV, Gollasch S, Molvig L, Moore A, Popelka C, Armstrong J, Mahon R, Ehlers J, Huesing J, Margam V, Shade R (2012) Insect-protected cowpeas using gene technology. In: Fatokun C (ed) Innovative research along the cowpea value chain proceedings of fifth world cowpea conference on improving livelihood in the cowpea value chain through advancement in science. International Institute of Tropical Agriculture, Ibadan, pp 131–137Google Scholar
  68. Hilder V (2003) GM plants and protection against insects–alternative strategies based on gene technology. Acta Agric Scand (B) 53(S1):34–40Google Scholar
  69. Horber E (1978) Resistance of pests of grain legumes in the U.S.A. In: Singh SR, van HF E, Taylor TA (eds) Pests of grain legumes: ecology and control. Academic Press, London, UK, pp 281–295Google Scholar
  70. Huynh BL, Ehlers JD, Ndeve A, Wanamaker S, Lucas MR, Close TJ, Roberts PA (2015) Genetic mapping and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California. Mol Breed 35(1):36PubMedPubMedCentralCrossRefGoogle Scholar
  71. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66CrossRefGoogle Scholar
  72. Ignacimuthu S, Prakash S (2006) Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. J Biosci 31(3):339–345PubMedCrossRefPubMedCentralGoogle Scholar
  73. Indurker S, Misra HS, Eapen S (2007) Genetic transformation of chickpea (Cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment. Plant Cell Rep 26(6):755–763PubMedCrossRefPubMedCentralGoogle Scholar
  74. Ishimoto M, Sato T, Chrispeels MJ, Kitamura K (1996) Bruchid resistance of transgenic azuki bean expressing seed α-amylase inhibitor of common bean. Entomol Exp Appl 79(3):309–315CrossRefGoogle Scholar
  75. Jackai LEN, Oghiakhe S (1989) Pod wall trichomes and resistance of two wild cowpea, Vigna vexillata, accessions to Maruca testualis (Geyer) (Lepidoptera: Pyralidae) and Clavigralla tomentosicollis Stål (Hemiptera: Coreidae). Bull Entomol Res 79(4):595–605CrossRefGoogle Scholar
  76. Jayanand B, Sudarsanam G, Sharma KK (2003) An efficient protocol for the regeneration of whole plants of chickpea (Cicer arietinum L.) by using axillary meristem explants derived from in vitro-germinated seedlings. In Vitro Cell Dev Biol Plant 39(2):171–179CrossRefGoogle Scholar
  77. Kamphuis LG, Lichtenzveig J, Peng K, Guo SM, Klingler JP, Siddique KH, Singh KB (2013a) Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula. J Exp Bot 64(16):5157–5172PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kamphuis LG, Zulak K, Gao LL, Anderson J, Singh KB (2013b) Plant–aphid interactions with a focus on legumes. Funct Plant Biol 40(12):1271–1284CrossRefGoogle Scholar
  79. Kaniuczak Z, Matosz I (1998) The effect of insecticidal seed dressings upon the broad bean weevil (Bruchus rufimanus Boh.) in the cultivation of the field bean. J Plant Prot Res 38:84–88Google Scholar
  80. Kant K, Kanaujia KR, Kanaujia S (2007) Role of plant density and abiotic factors on population dynamics of Helicoverpa armigera (Hübner) in Chick pea. Ann Plant Prot Sci 15(2):303–306Google Scholar
  81. Kaplan I, Dively GP, Denno RF (2009) The costs of anti-herbivore defense traits in agricultural crop plants: a case study involving leafhoppers and trichomes. Ecol Appl 19(4):864–872PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kar S, Basu D, Das S, Ramkrishnan NA, Mukherjee P, Nayak P, Sen SK (1997) Expression of cryIA (c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod-borer (Heliothis armigera) larvae. Transgenic Res 6(2):177–185CrossRefGoogle Scholar
  83. Kareiva P, Sahakian R (1990) Tritrophic effects of a simple architectural mutation in pea plants. Nature 345(6274):433–434CrossRefGoogle Scholar
  84. Karungi J, Adipala E, Ogenga-Latigo MW, Kyamanywa S, Oyobo N (2000) Pest management in cowpea. Part 1. Influence of planting time and plant density on cowpea field pests infestation in eastern Uganda. Crop Prot 19(4):231–236CrossRefGoogle Scholar
  85. Keneni G, Bekele E, Getu E, Imtiaz M, Damte T, Mulatu B, Dagne K (2011) Breeding food legumes for resistance to storage insect pests: potential and limitations. Sustainability 3(9):1399–1415CrossRefGoogle Scholar
  86. Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291(5511):2141–2144PubMedCrossRefPubMedCentralGoogle Scholar
  87. Khursheed S, Khan S (2016) Genetic improvement of two cultivars of Vicia faba L. using gammairradiation and ethyl methanesulphonate mutagenesis. Legum Res Int J 40(2):338–344Google Scholar
  88. Klingler JP, Nair RM, Edwards OR (2009) A single gene, AIN, in Medicago truncatula mediates a hypersensitive response to both bluegreen aphid and pea aphid, but confers resistance only to bluegreen aphid. J Exp Bot 60:4115–4127PubMedPubMedCentralCrossRefGoogle Scholar
  89. Koona P, Osisanya EO, Jackai LEN, Tamo M, Reeves J (2002) Pod surface characteristics in wild and cultivated Vigna species and resistance to the coreid bug Clavigralla tomentosicollis Stal. (Hemiptera: Coreidae). Int J Trop Insect Sci 22(1):1–7CrossRefGoogle Scholar
  90. Kostyukovsky M, Trostanetsky A (2006) The effect of a new chitin synthesis inhibitor, novaluron, on various developmental stages of Tribolium castaneum (Herbst). J Stored Prod Res 42(2):136–148CrossRefGoogle Scholar
  91. Kozgar I (2014) Mutation breeding in chickpea: perspectives and prospects for food security. Walter de Gruyter GmbH & Co KG, WarsawGoogle Scholar
  92. Kumar J, Choudhury AK, Solanki RK, Pratap A (2011) Towards MAS in pulses: a review. Plant Breed 130:297–313CrossRefGoogle Scholar
  93. Kusnierczyk A, Winge P, Midelfart H, Armbruster WS, Rossiter JT, Bones AM (2007) Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. J Exp Bot 58(10):2537–2552PubMedCrossRefPubMedCentralGoogle Scholar
  94. Lam WKF, Pedigo LP (2001) Effect of trichome density on soybean pod feeding by adult bean leaf beetles (Coleoptera: Chrysomelidae). J Econ Entomol 94(6):1459–1463PubMedCrossRefPubMedCentralGoogle Scholar
  95. Laskar RA, Khan S, Khursheed S, Raina A, Amin R (2015) Quantitative analysis of induced phenotypic diversity in chickpea using physical and chemical mutagenesis. J Agron 14(3):102CrossRefGoogle Scholar
  96. Lawrence PK, Koundal KR (2002) Plant protease inhibitors in control of phytophagous insects. Electron J Biotechnol 5(1):5–6CrossRefGoogle Scholar
  97. Lepore LS, Roelvink PR, Granados RR (1996) Enhancin, the granulosis virus protein that facilitates nucleopolyhedrovirus (NPV) infections, is a metalloprotease. J Invertebr Pathol 68(2):131–140PubMedCrossRefPubMedCentralGoogle Scholar
  98. Logiswaran G, Mohanasundaram M (1985) Effect of inter-cropping, spacing and mulching in the control of groundnut leaf miner, Aproaerema modicella (Deventer) (Gelechiidae: Lepidoptera). Madras Agric J 72:695–700Google Scholar
  99. Lomash K, Bisht RS (2013) Population dynamics of Helicoverpa armigera (Hubner) on chickpea crop. Pantnagar J Res 11(1):35–38Google Scholar
  100. Malhotra RS, El-Bouhssini M, Joubi A (2007) Registration of seven improved chickpea breeding lines resistant to leaf miner. J Plant Regist 1(2):145–146CrossRefGoogle Scholar
  101. Maqbool SB, Riazuddin S, Loc NT, Gatehouse AM, Gatehouse JA, Christou P (2001) Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breed 7(1):85–93CrossRefGoogle Scholar
  102. Mehrotra M, Singh AK, Sanyal I, Altosaar I, Amla DV (2011) Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera. Euphytica 182(1):87–102CrossRefGoogle Scholar
  103. Michler, J. D., & Josephson, A. L. (2017). To specialize or diversify: agricultural diversity and poverty dynamics in Ethiopia. World Development, 89, 214–226.CrossRefGoogle Scholar
  104. Miklos JA, Alibhai MF, Bledig SA, Connor-Ward DC, Gao AG, Holmes BA, Kolacz KH, Kabuye VT, Macrae TC, Paradise MS, Toedebusch AS, Harrison LA (2007) Characterization of soybeanexhibiting high expression of a synthetic transgene that confers a high degreeof resistance to Lepidopteran pests. Crop Sci 47:148–157CrossRefGoogle Scholar
  105. Minja EM, Shanower TG, Silim SN, Karuru O (2000) Efficacy of different insecticides for pigeonpea pest management in Kenya. Int Chickpea Pigeonpea Newsl 7:53–55Google Scholar
  106. Mishra SK, Macedo MLR, Panda SK, Panigrahi J (2017) Bruchid pest management in pulses: past practices, present status and use of modern breeding tools for development of resistant varieties. Ann Appl Biol.  https://doi.org/10.1111/aab.12401 CrossRefGoogle Scholar
  107. Mithofer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450PubMedCrossRefPubMedCentralGoogle Scholar
  108. Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJ (2000) Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci 97(8):3820–3825PubMedCrossRefPubMedCentralGoogle Scholar
  109. Mota AC, DaMatta RA, Lima Filho M, Silva CP, Xavier-Filho J (2003) Cowpea (Vigna unguiculata) vicilins bind to the peritrophic membrane of larval sugarcane stalk borer (Diatraea saccharalis). J Insect Physiol 49(9):873–880PubMedCrossRefPubMedCentralGoogle Scholar
  110. Murfet IC (1971) Flowering in Pisum: reciprocal grafts between known genotypes. Aust J Biol Sci 24(4):1089–1102CrossRefGoogle Scholar
  111. Nagamani P, Viswanath K, Sharma OP, Bhagat S, Reddy PL (2013) Demonstration of IPM module for management of Helicoverpa armigera at village level. Ann Plant Prot Sci 21(2):432–434Google Scholar
  112. Nanda UK, Sasmal A, Mohanty SK (1996) Varietal reaction of pigeonpea to pod borer Helicoverpa armigera (Hubner) and modalities of resistance. Curr Agric Res 9:107–111Google Scholar
  113. Narvel JM, Walker DR, Rector BG, All JN, Parrott WA, Boerma HR (2001) A retrospective DNA marker assessment of the development of insect resistant soybean. Crop Sci 41(6):1931–1939CrossRefGoogle Scholar
  114. Nguyen NT, Borgemeister C, Poehling HM, Zimmermann G (2007) Laboratory investigations on the potential of entomopathogenic fungi for biocontrol of Helicoverpaarmigera (Lepidoptera: Noctuidae) larvae and pupae. Biocontrol Sci Tech 17(8):853–864CrossRefGoogle Scholar
  115. Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43CrossRefGoogle Scholar
  116. Pandey SP, Srivastava S, Goel R, Lakhwani D, Singh P, Asif MH, Sane AP (2017) Simulated herbivory in chickpea causes rapid changes in defense pathways and hormonal transcription networks of JA/ethylene/GA/auxin within minutes of wounding. Sci Rep 7:44729PubMedPubMedCentralCrossRefGoogle Scholar
  117. Parde VD, Sharma HC, Kachole MS (2012) Protease inhibitors in wild relatives of pigeonpea against the cotton bollworm/legume pod borer, Helicoverpa armigera. Am J Plant Sci 3:627–635CrossRefGoogle Scholar
  118. Patil A, Taware SP, Oak MD, Tamhankar SA, Rao VS (2007) Improvement of oil quality in soybean [Glycine max (L.) Merrill] by mutation breeding. J Am Oil Chem Soc 84(12):1117–1124CrossRefGoogle Scholar
  119. Pattar PS, Mansur CP, Alagundagi SC, Karbantanal SS (2012) Effect of intercropping systems on gram pod borer Helicoverpa armigera hubner and its natural enemies in chickpea. Indian J Entomol 74(2):136–141Google Scholar
  120. Petitt FL, Wietlisbach DO (1992) Intraspecific competition among same-aged larvae of Liriomyza sativae (Diptera: Agromyzidae) in lima bean primary leaves. Environ Entomol 21(1):136–140CrossRefGoogle Scholar
  121. Pompermayer P, Lopes AR, Terra WR, Parra JRP, Falco MC, Silva-Filho MC (2001) Effects of soybean proteinase inhibitor on development, survival and reproductive potential of the sugarcane borer, Diatraea saccharalis. Entomolo Exp Appl 99(1):79–85CrossRefGoogle Scholar
  122. Popelka JC, Terryn N, Higgins TJV (2004) Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Sci 167(2):195–206CrossRefGoogle Scholar
  123. Powell KS (2001) Antimetabolic effects of plant lectins towards nymphal stages of the planthoppers Tarophagous proserpina and Nilaparvata lugens. Entomol Exp Appl 99(1):71–78CrossRefGoogle Scholar
  124. Purcell JP, Greenplate JT, Jennings MG, Ryerse JS, Pershing JC, Sims SR et al (1993) Cholesterol oxidase: a potent insecticidal protein active against boll weevil larvae. Biochem Biophys Res Commun 196(3):1406–1413PubMedCrossRefPubMedCentralGoogle Scholar
  125. Pusztai A, Bardocz GG, Alonso R, Chrispeels MJ, Schroeder HE, Tabe LM, Higgins TJ (1999) Expression of the insecticidal bean alpha-amylase inhibitor transgene has minimal detrimental effect on the nutritional value of peas fed to rats at 30% of the diet. J Nutr 129:1597–1603PubMedCrossRefPubMedCentralGoogle Scholar
  126. Qayum MA, Sanghi NK (1994). Red hairy caterpillar management through group action and non-pesticidal methods. Programme coordinated by ASW & Oxfarm (India) TrustGoogle Scholar
  127. Ramu SV, Rohini S, Keshavareddy G, Gowri Neelima M, Shanmugam NB, Kumar ARV, Udayakumar M (2012) Expression of a synthetic cry1AcF gene in transgenic Pigeon pea confers resistance to Helicoverpa armigera. J Appl Entomol 136(9):675–687CrossRefGoogle Scholar
  128. Ranga Rao GV, Rao VR (2010) Status of IPM in Indian agriculture: a need for better adoption. Indian J Plant Prot 38(2):115–121Google Scholar
  129. Ranga Rao GV, Wightman JA (1994) First annual Rabi/summer groundnut research workers. In: Group meeting held at Indian institute of Technology, Kharagpur, pp 12–15Google Scholar
  130. Ranjekar PK, Patankar A, Gupta V, Bhatnagar R, Bentur J, Kumar PA (2003) Genetic engineering of crop plants for insect resistance. Curr Sci 84(3):321–329Google Scholar
  131. Rao GR, Wightman JA, Rao DR (1991) The development of a standard pheromone trapping procedure for Spodoptera Iitura (F) (Lepidoptera: Noctuidae) population in groundnut (Arachis hyopogaea L) crops. Int J Pest Manag 37(1):37–40Google Scholar
  132. Ravindran BM (2016) Transgenic Pest resistance. Devagiri J Sci 2(1):1–31Google Scholar
  133. Reddy AA (2009) Pulses production technology: Status and way forward. Econ Polit Wkly 44:73–80Google Scholar
  134. Reddy NC, Singh Y, Dureja P, Singh SV (2001) Bioefficacy of insecticides, biopesticides and their combinations against podborers in pigeonpea. Indian J Entomol 63(2):137–143Google Scholar
  135. Rohini VK, Rao KS (2000) Transformation of peanut (Arachis hypogaea L.): a non-tissue culture based approach for generating transgenic plants. Plant Sci 150(1):41–49CrossRefGoogle Scholar
  136. Romeis J, Shanower TG (1996) Arthropod natural enemies of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in India. Biocontrol Sci Tech 6(4):481–508CrossRefGoogle Scholar
  137. Rubiales D, Fondevilla S, Chen W, Gentzbittel L, Higgins TJ, Castillejo MA et al (2015) Achievements and challenges in legume breeding for pest and disease resistance. Crit Rev Plant Sci 34(1–3):195–236CrossRefGoogle Scholar
  138. Sahadia E, Aziz AE (2011) Control strategies of stored product pests. J Entomol 8:101–122CrossRefGoogle Scholar
  139. Sandhu S, Kang MS (2017) Advances in Breeding for Resistance to Insects. In: Arora R, Sandhu S (eds) Breeding Insect Resistant Crops for Sustainable Agriculture. Springer, Singapore, pp 67–99.  https://doi.org/10.1007/978-981-10-6056-4_3 CrossRefGoogle Scholar
  140. Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168(4):1135–1146CrossRefGoogle Scholar
  141. Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Higgins TJV (2004) Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed 14(1):73–82CrossRefGoogle Scholar
  142. Schafleitner R, Huang SM, Chu SH, Yen JY, Lin CY, Yan MR, Krishnan B, Liu MS, Lo HF, Chen CY, Long-fang OC (2016) Identification of single nucleotide polymorphism markers associated with resistance to bruchids (Callosobruchus spp.) in wild mungbean (Vigna radiata var. sublobata) and cultivated V. radiata through genotyping by sequencing and quantitative trait locus analysis. BMC Plant Biol 16(1):159PubMedPubMedCentralCrossRefGoogle Scholar
  143. Schoonhoven LM, Van Loon JJ, Dicke M (2005) Insect-plant biology. Oxford University Press, OxfordGoogle Scholar
  144. Schroeder HE, Gollasch S, Moore A, Tabe LM, Craig S, Hardie DC, Chrispeels MJ, Spencer D, Higgins TJ (1995) Bean [alpha]-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol 107(4):1233–1239PubMedPubMedCentralCrossRefGoogle Scholar
  145. Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Bio/Technology 12:793–796Google Scholar
  146. Shanower TG, Romeis JMEM, Minja EM (1999) Insect pests of pigeonpea and their management. Annu Rev Entomol 44(1):77–96PubMedCrossRefPubMedCentralGoogle Scholar
  147. Sharma BC, Mann K, Kashyap SL, Pampapathy G, RidsdiIl-Smith J (2002) Identification of Helicoverpa resistance in wild species of chickpeas. In: McComb JA (ed) Plant breeding for the 11th millennium: proceedings of the 12th Australian plant breeding conference - 15–20 Sept 2002. Australian Plant Breeding Inc., Perth, pp 277–280Google Scholar
  148. Sharma HC, Pampapathy G, Dwivedi SL, Reddy LJ (2003) Mechanisms and diversity of resistance to insect pests in wild relatives of groundnut. J Econ Entomol 96(6):1886–1897PubMedCrossRefGoogle Scholar
  149. Sharma HC, Varshney RK, Gaur PM, Gowda CLL (2008) Potential for using morphological, biochemical, and molecular markers for resistance to insect pests in grain legumes. J Food Legum 21(4):211–217Google Scholar
  150. Sharma HC, Dhillon MK, Bhatnagar-Mathur P, Sharma KK, Butterfield M (2010) Potential of transgenic grain legumes for pest management and sustainable crop production. In: Pests and pathogens: management strategies. BS Publications, Hyderabad, pp 135–158 ISBN 978-81-7800-227-9Google Scholar
  151. Sharma KK, Ortiz R (2000) Program for the application of genetic transformation for crop improvement in the semi-arid tropics. In Vitro Cell Dev Biol Plant 36(2):83–92CrossRefGoogle Scholar
  152. Sharma OP, Patange NR, Rachappa V, Venilla S (2016) Integrated disease and insect pest management for enhancing production of pulse crops. Indian J Genet Plant Breed 76(4):451–458CrossRefGoogle Scholar
  153. Shaw SS, Choudhary RK, Verma RS, Badaya AK, Mandloi KC (1999) Efficacy of some insecticidal mixture against bollworm complex of cotton under rainfed conditions. Shashya 6(1):71–74Google Scholar
  154. Shimoda T, Takabayashi J, Ashihara W, Takafuji A (1997) Response of predatory insect Scolothrips takahashii toward herbivore-induced plant volatiles under laboratory and field conditions. J Chem Ecol 23(8):2033–2048CrossRefGoogle Scholar
  155. Shinde YA, Patel BR, Mulekar VG (2013) Seasonal incidence of gram caterpillar, Helicoverpaarmigera (Hub.) in chickpea. Curr Biotica 7(1):2Google Scholar
  156. Singh SR, Emden HV (1979) Insect pests of grain legumes. Annu Rev Entomol 24(1):255–278CrossRefGoogle Scholar
  157. Singh KB, Ocampo B (1997) Exploitation of wild Cicer species for yield improvement in chickpea. Theor Appl Genet 95(3):418–423CrossRefGoogle Scholar
  158. Singsit C, Adang MJ, Lynch RE, Anderson WF, Wang A, Cardineau G, Ozias-Akins P (1997) Expression of a Bacillus thuringiensis cryIA (c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res 6(2):169–176PubMedCrossRefGoogle Scholar
  159. Solleti SK, Bakshi S, Purkayastha J, Panda SK, Sahoo L (2008) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean α-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27(12):1841–1850PubMedCrossRefGoogle Scholar
  160. Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131(3):892–899PubMedPubMedCentralCrossRefGoogle Scholar
  161. Souframanien J, Gupta SK, Gopalakrishna T (2010) Identification of quantitative trait loci for bruchid (Callosobruchus maculatus) resistance in black gram [Vigna mungo (L.) Hepper]. Euphytica 176(3):349–356CrossRefGoogle Scholar
  162. Sousa-Majer MJD, Turner NC, Hardie DC, Morton RL, Lamont B, Higgins TJ (2004) Response to water deficit and high temperature of transgenic peas (Pisum sativum L.) containing a seed-specific α-amylase inhibitor and the subsequent effects on pea weevil (Bruchus pisorum L.) survival. J Exp Bot 55(396):497–505PubMedCrossRefPubMedCentralGoogle Scholar
  163. Srinivasan A, Giri AP, Harsulkar AM, Gatehouse JA, Gupta VS (2005) Kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on podborer (Helicoverpaarmigera) larvae. Plant Mol Biol 57(3):359–374PubMedCrossRefPubMedCentralGoogle Scholar
  164. Stam JM, Kroes A, Li Y, Gols R, van Loon JJ, Poelman EH, Dicke M (2014) Plant interactions with multiple insect herbivores: from community to genes. Annu Rev Plant Biol 65:689–713PubMedCrossRefPubMedCentralGoogle Scholar
  165. Stewart SA, Hodge S, Ismail N, Mansfield JW, Feys BJ, Prospéri JM, Powell G (2009) The RAP1 gene confers effective, race-specific resistance to the pea aphid in Medicago truncatula independent of the hypersensitive reaction. Mol Plant-Microbe Interact 22(12):1645–1655PubMedCrossRefPubMedCentralGoogle Scholar
  166. Surekha C, Beena MR, Arundhati A, Singh PK, Tuli R, Dutta-Gupta A, Kirti PB (2005) Agrobacterium-mediated genetic transformation of pigeon pea (Cajanus cajan (L.) Millsp.)using embryonal segments and development of transgenic plants for resistance against Spodoptera. Plant Sci 169(6):1074–1080CrossRefGoogle Scholar
  167. Sushil K, Chauhan R, Roshan L (2009) Evaluation of native strains of Bacillus thuringiensis var. kurstaki against Helicoverpaarmigera (Hübner) on pigeonpea. J Insect Sci (Ludhiana) 22(2):139–143Google Scholar
  168. Thomas JC, Wasmann CC, Echt C, Dunn RL, Bohnert HJ, McCoy TJ (1994) Introduction and expression of an insect proteinase inhibitor in alfalfa Medicago sativa L. Plant Cell Rep 14(1):31–36PubMedCrossRefPubMedCentralGoogle Scholar
  169. Thu TT, Mai TTX, Dewaele E, Farsi S, Tadesse Y, Angenon G, Jacobs M (2003) In vitro regeneration and transformation of pigeonpea [Cajanus cajan (L.) Millsp]. Mol Breed 11(2):159–168CrossRefGoogle Scholar
  170. Tohidfar M, Zare N, Jouzani GS, Eftekhari SM (2013) Agrobacterium-mediated transformation of alfalfa (Medicago sativa) using a synthetic cry3a gene to enhance resistance against alfalfa weevil. Plant Cell Tissue Org Cult 113(2):227–235CrossRefGoogle Scholar
  171. Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou TJ, Katagi H, Dewbre GR, Weigel D (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22(6):531–541PubMedCrossRefPubMedCentralGoogle Scholar
  172. Usharani KS, Kumar CA (2015) Mutagenic effects of gamma rays and EMS on frequency and spectrum of chlorophyll mutations in urdbean (Vigna mungo (L.) Hepper). Indian J Sci Technol 8(10):927–933CrossRefGoogle Scholar
  173. Valencia A, Bustillo AE, Ossa GE, Chrispeels MJ (2000) α-Amylases of the coffee berry borer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors. Insect Biochem Mol Biol 30(3):207–213PubMedCrossRefGoogle Scholar
  174. Van der Westhuizen AJ, Qian XM, Botha AM (1998) Differential induction of apoplastic peroxidase and chitinase activities in susceptible and resistant wheat cultivars by Russian wheat aphid infestation. Plant Cell Rep 18(1–2):132–137CrossRefGoogle Scholar
  175. Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10(12):621–630PubMedCrossRefGoogle Scholar
  176. Villareal JM, Hautea DM, Carpena AL (1998) Molecular mapping of the bruchid resistance gene in mungbean Vigna radiata L. Philipp J Crop Sci 23(Suppl. 1):1–9Google Scholar
  177. Visalakshmi V (2001) Effect of different IPM components on Helicoverpa armigera (Hubner) and their impact on natural enemies in chickpea. Doctoral dissertation, Acharya NG Ranga Agricultural UniversityGoogle Scholar
  178. Walker DR, All JN, McPherson RM, Boerma HR, Parrott WA (2000) Field evaluation of soybean engineered with a synthetic cry1Ac transgene for resistance to corn earworm, soybean looper, velvetbean caterpillar (Lepidoptera: Noctuidae), and lesser cornstalk borer (Lepidoptera: Pyralidae). J Econ Entomol 93(3):613–622PubMedCrossRefPubMedCentralGoogle Scholar
  179. Walker D, Boerma HR, All J, Parrott W (2002) Combining cry1Ac with QTL alleles from PI 229358 to improve soybean resistance to lepidopteran pests. Mol Breed 9(1):43–51CrossRefGoogle Scholar
  180. Wang SF, Liu AY, Ridsdill-Smith TJ, Ghisalberti EL (2000) Role of alkaloids in resistance of yellow lupin to red-legged earth mite Halotydeus destructor. J Chem Ecol 26(2):429–441CrossRefGoogle Scholar
  181. Wang J, Song W, Zhang W, Liu C, Hu G, Chen Q (2009) Meta-analysis of insect-resistance QTLs in soybean. Hereditas 31:953–961PubMedCrossRefPubMedCentralGoogle Scholar
  182. Wani MR, Kozgar MI, Khan S, Ahanger MA, Ahmad P (2014) Induced mutagenesis for the improvement of pulse crops with special reference to mung bean: a review update. In: Improvement of crops in the era of climatic changes. Springer, New York, pp 247–288CrossRefGoogle Scholar
  183. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7(10):1306–1320PubMedPubMedCentralCrossRefGoogle Scholar
  184. War AR, Paulraj MG, Hussain B, Buhroo AA, Ignacimuthu S, Sharma HC (2013) Effect of plant secondary metabolites on legume pod borer, Helicoverpa armigera. J Pest Sci 86(3):399–408CrossRefGoogle Scholar
  185. Yang G, Espelie KE, Todd JW, Culbreath AK, Pittman RN, Demski JW (1993) Cuticular lipids from wild and cultivated peanuts and the relative resistance of these peanut species to fall armyworm and thrips. J Agric Food Chem 41(5):814–818CrossRefGoogle Scholar
  186. Yang TJ, Kim DH, Kuo GC, Kumar L, Yong ND, Park HG (1998) RFLP marker-assisted selection in backcross breeding for introgression of the bruchid resistance gene in mungbean. Korean J Breed (Korea Republic) 30:8–15Google Scholar
  187. Yencho GC, Cohen MB, Byrne PF (2000) Applications of tagging and mapping insect resistance loci in plants. Annu Rev Entomol 45(1):393–422PubMedCrossRefPubMedCentralGoogle Scholar
  188. Yoshida M, Cowgill SE, Wightman JA (1997) Roles of oxalic and malic acids in chickpea trichome exudate in host-plant resistance to Helicoverpa armigera. J Chem Ecol 23(4):1195–1210CrossRefGoogle Scholar
  189. Zhao JZ, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21(12):1493–1497PubMedCrossRefPubMedCentralGoogle Scholar
  190. Zhu-Salzman K, Luthe DS, Felton GW (2008) Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant Physiol 146(3):852–858PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Santisree Parankusam
    • 1
    Email author
  • Sricindhuri Katamreddy
    • 1
  • Pradeep Reddy Bommineni
    • 1
  • Pooja Bhatnagar-Mathur
    • 1
  • Kiran K. Sharma
    • 1
  1. 1.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)HyderabadIndia

Personalised recommendations