Advertisement

Pisum Improvement Against Biotic Stress: Current Status and Future Prospects

  • Reetika Mahajan
  • Aejaz Ahmad Dar
  • Shazia Mukthar
  • Sajad Majeed Zargar
  • Susheel Sharma
Chapter

Abstract

Unfavorable environment conditions like abiotic stresses (drought, salinity, waterlogging, extreme temperature, etc.) and biotic factors (fungi, virus, bacteria, pest, and insects) have affected the plant growth and development. Pea is the most important legume crop with great nutritive value in terms of starch and protein. Like other crops, pea production has also been adversely affected by biotic stresses. Various diseases like powdery mildew, rust, ascochyta blight, white rot, wilt, root rot, and collar rot have decreased the yield and production rate of pea crop across the globe. Approaches like classical and modern breeding and biotechnology interventions are being utilized by the basic plant researches and the breeders to protect the pea crop from these biotic stresses. In this chapter attempts will be made to discuss various biotic stresses which affect the legume production especially pea and approaches to overcome these stresses which will be useful for pea improvement program.

Keywords

Pisum sativum Biotic stress Powdery mildew Root rot BCMV Proteomics 

References

  1. Ahmad P, Prasad MNV (2012) Environmental adaptations and stress tolerance in plants in the era of climate change. Springer, New YorkCrossRefGoogle Scholar
  2. Alegbejo MD, Abo ME (2002) Etiology, ecology, epidemiology and control of groundnut rosette disease in Africa. J Sustain Agric 20:17–29CrossRefGoogle Scholar
  3. Allen DJ (1983) The pathology of tropical food legumes: disease resistance in crop improvement. Wiley, New York, 413 ppGoogle Scholar
  4. Amey RC, Schleicher T, Slinn J, Lewis M, Macdonald H, Neill SJ, Spencer-Phillips PTN (2008) Proteomic analysis of a compatible interaction between Pisum sativum (pea) and the downy mildew pathogen Peronospora viciae. Eur J Plant Pathol 122:41–55CrossRefGoogle Scholar
  5. Amian AA, Papenbrock J, Jacobsen HJ, Hassan F (2011) Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (chitinase and glucanase). GM Crops 2(2):104–109.  https://doi.org/10.4161/gmcr.2.2.16125 CrossRefGoogle Scholar
  6. Arnoldi A, Zanoni C, Lammi C, Boschin G (2015) The role of grain legumes in the prevention of hypercholesterolemia and hypertension. Crit Rev Plant Sci 34:144–168.  https://doi.org/10.1080/07352689.2014.897908 CrossRefGoogle Scholar
  7. Aryamanesh N, Byrne O, Hardie DC, Khan T, Siddique KHM, Yan G (2012) Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum. Crop Pasture Sci 63:612–618.  https://doi.org/10.1071/CP12225 CrossRefGoogle Scholar
  8. Aryamanesh N, Zeng Y, Byrne O, Hardie DC, Al-Subhi AM, Khan T et al (2014) Identification of genome regions controlling cotyledon, pod wall/seed coat and pod wall resistance to pea weevil through QTL mapping. Theor Appl Genet 127:489–497.  https://doi.org/10.1007/s00122-013-2234-2 CrossRefGoogle Scholar
  9. Attanayake RN, Glawe DA, McPhee KE, Dugan FM, Chen W (2010) Erysiphe trifolii—a newly recognized powdery mildew pathogen of pea. Plant Pathol 59:712–720. https://doi.org/10.1111/j.1365-3059.2010.02306.x CrossRefGoogle Scholar
  10. Bagheri A, Paull JG, Rathjen AJ (1994) The response of Pisum sativum L. germplasm to high concentrations of soil boron. Euphytica 75:9–17.  https://doi.org/10.1007/BF00024526 CrossRefGoogle Scholar
  11. Baltrus DA, Nishimura MT, Dougherty KM et al (2012) The molecular basis of host specialization in bean pathovars of Pseudomonas syringae. Mol Plant Microbe Interact 25(877):888Google Scholar
  12. Bar M, Ori N (2015) Compound leaf development in model plant species. Curr Opin Plant Biol 23:61–69CrossRefGoogle Scholar
  13. BARI (Bangladesh Agricultural Research Institute) (1987) Yield losses assessment of mungbean due to powdery mildew. In: Plant Pathology Division (ed) Annual report, 1983/84. BARI, Joydebpur, Gazipur, pp 81–82Google Scholar
  14. Barilli E, Satovic Z, Rubiales D, Torres AM (2010) Mapping of quantitative trait loci controlling partial resistance against rust incited by Uromyces pisi (Pers.) Wint. in a Pisum fulvum L. intraspecific cross. Euphytica 175:151–159.  https://doi.org/10.1007/s10681-010-0141-z CrossRefGoogle Scholar
  15. Barilli E, Rubiales D, Gjetting T, Lyngkjær MF (2014) Differential gene transcript accumulation in peas in response to powdery mildew (Erysiphe pisi) attack. Euphytica 198(1).  https://doi.org/10.1007/s10681-014-1062-z CrossRefGoogle Scholar
  16. Basher I, Ishtiaq S, Fiaz S, Sajjad M (2017) Association of yield attributing traits in pea (Pisum sativum L.) germplasm. Banat’s J Biotechnol VIII(15).  https://doi.org/10.7904/2068–4738–VIII(15)–43
  17. Bastianelli D, Grosjean F, Peyronnet C, Duparque M, Regnier JM (1998) Feeding value of pea (Pisum sativum, L.) - 1 chemical composition of different categories of pea. Anim Sci 67:609–619.  https://doi.org/10.1017/S1357729800033051 CrossRefGoogle Scholar
  18. Bastida-Garcia JL, González-Ronquillo M, Domínguez Vara IA, Romero-Bernal J, Castelán Ortega O (2011) Effect of field pea (Pisum sativum L.) level on intake, digestion, ruminal fermentation and in vitro gas production in sheep fed maintenance diets. Anim Sci J 82:654–662.  https://doi.org/10.1111/j.1740-0929.2011.00884.x CrossRefGoogle Scholar
  19. Bénézit M, Biarnès V, Jeuffroy M, Carmona MA, Gally ME, Lopez SE (2005) Asian soybean rust: incidence, severity, and morphological characterization of Phakopsora pachyrhizi (uredinia and telia) in Argentina. Plant Dis 89:109–109Google Scholar
  20. Bordat A, Savois V, Nicolas M, Salse J, Chauveau A, Bourgeois M et al (2011) Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. G3 1:93–103.  https://doi.org/10.1534/g3.111.000349 CrossRefGoogle Scholar
  21. Byrne OM, Hardie DC, Khan TN, Speijers J, Yan G (2008) Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum x P. fulvum interspecific cross. Aust J Agric Res 59:854–862.  https://doi.org/10.1071/AR07353 CrossRefGoogle Scholar
  22. Cardoso A, Pereira R, Fonseca M, Leitão J (2017) A microsatellite sequence in the fifth intron provides a broad-spectrum SSR marker for multiple alleles of the er1/ PsMLO1 powdery mildew resistance gene in Pisum sativum L. Mol Breed 37:84.  https://doi.org/10.1007/s11032-017-0685-x CrossRefGoogle Scholar
  23. Carmona MA, Gally ME, Lopez SE (2005) Asian soybean rust: incidence, severity, and morphological characterization of Phakopsora pachyrhizi (uredinia and telia) in Argentina. Plant Dis 89:109–109CrossRefGoogle Scholar
  24. Carrillo E, Rubiales D, Pérez-De-Luque A, Fondevilla S (2012) Characterization of mechanisms of resistance against Didymella pinodes in Pisum spp. Eur J Plant Pathol 135:761–769.  https://doi.org/10.1007/s10658-012-0116-0 CrossRefGoogle Scholar
  25. Castillejo MA, Amiour N, Gaudot ED, Rubiales D, Jorrín JV (2004) A proteomic approach to studying plant response to crenate broomrape (Orobanche crenata) in pea (Pisum sativum). Phytochemistry 65:1817–1828CrossRefGoogle Scholar
  26. Castillejo MA, Curto M, Fondevilla S, Rubiales D, Jorrin JV (2010) Two-dimensional electrophoresis based proteomic analysis of the pea (Pisum sativum) in response to Mycosphaerella pinodes. J Agric Food Chem 58:12822–12832CrossRefGoogle Scholar
  27. Charlton A, Allnutt T, Holmes S, Chisholm J, Bean S, Ellis N, Mullineaux P, Oehlschlager S (2004) NMR profiling of transgenic peas. Plant Biotechnol J 2:27–35CrossRefGoogle Scholar
  28. Charlton A, Donarski JA, Harrison M, Jones SA, Godward J, Oehlschlager S, Arques JL, Ambrose M, Chinoy C, Mullineaux PM et al (2008) Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy. Metabolomics 4:312–327CrossRefGoogle Scholar
  29. Chavanne F, Zhang DX, Liaud MF, Cerff R (1998) Structure and evolution of Cyclops: a novel giant retrotransposon of the Ty3/Gypsy family highly amplified in pea and other legume species. Plant Mol Biol 37:363–375CrossRefGoogle Scholar
  30. Clement SL, Hardie DC, Elberson LR (2002) Variation among accessions of Pisum fulvum for resistance to pea weevil. Crop Sci 42:2167–2173.  https://doi.org/10.2135/cropsci2002.2167 CrossRefGoogle Scholar
  31. Clement SL, McPhee KE, Elberson LR, Evans MA (2009) Pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae), resistance in Pisum sativum x Pisum fulvum interspecific crosses. Plant Breed 128:478–485.  https://doi.org/10.1111/j.1439-0523.2008.01603.x CrossRefGoogle Scholar
  32. Clulow SA, Lewis BG, Matthews P (1991a) A pathotype classification for Ascochyta pinodes. J Phytopathol 131:322–332.  https://doi.org/10.1111/j.1439-0434.1991.tb01203.x CrossRefGoogle Scholar
  33. Clulow SA, Matthews P, Lewis BG (1991b) Genetic analysis of resistance to Mycosphaerella pinodes in pea seedlings. Euphytica 58:183–189.  https://doi.org/10.1007/BF00022819 CrossRefGoogle Scholar
  34. Coyne DP, Steadman JR, Godoy-Lutz G, Gilbertson R, Arnaud-Santana E, Beaver JS, Myers JR (2003) Contributions of the Bean/Cowpea CRSP to management of bean diseases. Field Crop Res 82:155–168CrossRefGoogle Scholar
  35. Coyne CJ, McClendon MT, Walling JG, Timmerman-Vaughan GM, Murray S et al (2007) Construction and characterization of two bacterial artificial chromosome libraries of pea (Pisum sativum L.) for the isolation of economically important genes. Genome 50:871–875CrossRefPubMedPubMedCentralGoogle Scholar
  36. Curto M, Camafeita E, Lopez JA, Maldonado AM, Rubiales D, Jorrín JV (2006) A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi). Proteomics 6:S163–S174CrossRefGoogle Scholar
  37. Dalmais M, Schmidt J, Le Signor C, Moussy F, Burstin J et al (2008) UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol 9.  https://doi.org/10.1186/gb-2008-9-2-r43 PubMedCentralCrossRefPubMedGoogle Scholar
  38. Dang JK, Sangwan MS, Yadar RK, Chowdhury RK (1994) Sources of resistance against powdery mildew in pea. Legum Res 17:231–232Google Scholar
  39. Deepika, Mahajan R, Lay P, Sharma P, Salgotra RK, Sharma S (2017) Assessment of genetic variability, heritability and genetic advance among Pisum accessions. Vegetos Int J Plant Res 30:482–488CrossRefGoogle Scholar
  40. Dhall RK (2015) Breeding for biotic stresses resistance in vegetable crops: a review. Res & Rev: J Crop Sci Technol 4(1) ISSN: 2319-3395(online)Google Scholar
  41. Dirlewanger E, Isaac PG, Ranade S, Belajouza M, Cousin R, de Vienne D (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88:17–27.  https://doi.org/10.1007/BF00222388 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Doring TF, Storkey J, Baddeley J et al (2012) Legume based plant mixtures for delivery of multiple ecosystem services: weed diversity and weed control. In: McCracken K (ed) SAC SEPA biennial conference: valuing ecosystems: policy, economic and management interactions. Edinburgh, 3–4 Apr 2012, pp 163–168Google Scholar
  43. du Preez ED, van Rij NC, Lawrance KF (2005) First report of soybean rust caused by Phakopsora pachyrhizi on dry beans in South Africa. Plant Dis 89:206–206CrossRefGoogle Scholar
  44. Duarte J, Rivière N, Baranger A, Aubert G, Burstin J, Cornet L et al (2014) Transcriptome sequencing for high throughput SNP development and genetic mapping in pea. BMC Genomics 15:126.  https://doi.org/10.1186/1471-2164-15-126 CrossRefPubMedCentralPubMedGoogle Scholar
  45. Duc G, Blancard S, Hénault C, Lecomte C, Petit M, Bernicot M-H, et al (2010) Potentiels et leviers pour développer la production et l’utilisation des protéagineux dans le cadre d’une agriculture durable en Bourgogne. Innov Agron 11:157–171Google Scholar
  46. Ek M, Eklund M, Von Post R, Dayteg C, Henriksson T, Weibull P, Ceplitis A, Isaac P, Tuvesson S (2005) Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas 142:86–91CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ellis THN, Poyser SJ (2002) An integrated and comparative view of pea genetic and cytogenetic maps. New Phytol 153:17–25CrossRefGoogle Scholar
  48. Ellis THN, Turner L, Hellens RP, Lee D, Harker CL, Enard C et al (1992) Linkage maps in pea. Genetics 130:649–663PubMedCentralPubMedGoogle Scholar
  49. Ellis THN, Hofer JI, Timmerman-Vaughan GM, Coyne CJ, Hellens RP (2011) Mendel, 150 years on. Trends Plant Sci 16:590–596CrossRefPubMedPubMedCentralGoogle Scholar
  50. FAOSTAT (2013) http://faostat3.fao.org/
  51. Feng J, Hwang R, Chang KF, Conner RL, Hwang SF, Strelkov SE et al (2011) Identification of microsatellite markers linked to quantitative trait loci controlling resistance to Fusarium root rot in field pea. Can J Plant Sci 91:199–204.  https://doi.org/10.4141/cjps09176 CrossRefGoogle Scholar
  52. Flavell RB, Bennett MD, Smith JB, Smith DB (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12:257–269CrossRefPubMedPubMedCentralGoogle Scholar
  53. Fondevilla S, Avila CM, Cubero JI, Rubiales D (2005) Response to Ascochyta pinodes in a germplasm collection of Pisum spp. Plant Breed 124:313–315.  https://doi.org/10.1111/j.1439-0523.2005.01104.x CrossRefGoogle Scholar
  54. Fondevilla S, Carver TLW, Moreno MT, Rubiales D (2007a) Identification and characterisation of sources of resistance to Erysiphe pisi Syd. in Pisum spp. Plant Breed 126:113–119.  https://doi.org/10.1111/j.1439-0523.2006.01312.x CrossRefGoogle Scholar
  55. Fondevilla S, Torres AM, Moreno MT, Rubiales D (2007b) Identification of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breed Sci 57:181–184CrossRefGoogle Scholar
  56. Fondevilla S, Rubiales D, Moreno MT, Torres AM (2008a) Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea. Mol Breed 22:193–200.  https://doi.org/10.1007/s11032-008-9166-6 CrossRefGoogle Scholar
  57. Fondevilla S, Satovic Z, Rubiales D, Moreno MT, Torres AM (2008b) Mapping of quantitative trait loci for resistance to Ascochyta pinodes in Pisum sativum subsp. syriacum. Mol Breed 21:439–454.  https://doi.org/10.1007/s11032-007-9144-4 CrossRefGoogle Scholar
  58. Fondevilla S, Almeida NF, Satovic Z, Rubiales D, Patto MCV, Cubero JI et al (2011a) Identification of common genomic regions controlling resistance to Mycosphaerella pinodes, earliness and architectural traits in different pea genetic backgrounds. Euphytica 182:43–52.  https://doi.org/10.1007/s10681-011-0460-8 CrossRefGoogle Scholar
  59. Fondevilla S, Küster H, Krajinski F, Cubero JI, Rubiales D (2011b) Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology. BMC Genomics 12.  https://doi.org/10.1186/1471-2164-12-28
  60. Fondevilla S, Martin-Sanz A, Satovic Z, Dolores Fernandez-Romero M, Rubiales D, Caminero C (2012) Identification of quantitative trait loci involved in resistance to Pseudomonas syringae pv. syringae in pea (Pisum sativum L.). Euphytica 186:805–812.  https://doi.org/10.1007/s10681-011-0592-x CrossRefGoogle Scholar
  61. Fondevilla S, Rotter B, Krezdorn N, Jüngling R, Winter P, Rubiales D (2013) Identification of genes involved in resistance to Didymella pinodes in pea by deepSuperSAGE genome-wide transcriptome profiling. Book of abstracts of First Legume Society Conference, pp 148Google Scholar
  62. Franssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber APM (2011) Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genomics 12.  https://doi.org/10.1186/1471-2164-12-227
  63. Fuchs J, Kühne M, Schubert I (1998) Assignment of linkage groups to pea chromosomes after karyotyping and gene mapping by fluorescent in situ hybridization. Chromosoma 107:272–276CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ghezal N, Rinez I, Sbai H, Saad I, Farooq M et al (2016) Improvement of Pisum sativum salt stress tolerance by bio-priming their seeds using Typha angustifolia leaves aqueous extract. S Afr J Bot 105:240–250CrossRefGoogle Scholar
  65. Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877PubMedCentralCrossRefPubMedGoogle Scholar
  66. Gritton ET, Ebert RD (1975) Interaction of planting date and powdery mildew on pea plant performance. Am Soc Horticult Sci 100:137–142Google Scholar
  67. Hall KJ, Parker JS, Ellis THN, Turner L, Knox MR, Hofer JMI et al (1997) The relationship between genetic and cytogenetic maps of pea. II. Physical maps of linkage mapping populations. Genome 40:755–769.  https://doi.org/10.1139/g97-798 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Hamon C, Baranger A, Coyne CJ, McGee RJ, Le Goff I, L’Anthoëne V et al (2011) New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple French and American environments. Theor Appl Genet 123:261–281.  https://doi.org/10.1007/s00122-011-1582-z CrossRefPubMedPubMedCentralGoogle Scholar
  69. Hamon C, Coyne CJ, McGee RJ, Lesné A, Esnault R, Mangin P et al (2013) QTL meta-analysis provides a comprehensive view of loci controlling partial resistance to Aphanomyces euteiches in four sources of resistance in pea. BMC Plant Biol 13:45.  https://doi.org/10.1186/1471-2229-13-45 CrossRefPubMedCentralPubMedGoogle Scholar
  70. Hamwieh A, Udupa SM, Choumane W, Sarker A, Dreyer F, Jung C, Baum M (2005) A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theor Appl Genet 110:669–677CrossRefGoogle Scholar
  71. Hance ST, Grey W, Weeden NF (2004) Identification of tolerance to Fusarium solani in Pisum sativum ssp. elatius. Pisum Genet 36:9–13Google Scholar
  72. Hanounik S (1981) Influence of Ronilan on the severity of chocolate spot and yield of faba bean. FABIS Newslett 3:50–51Google Scholar
  73. Harland SC (1948) Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Heredity 2:263–269CrossRefGoogle Scholar
  74. Hayer F, Bonnin E, Carrouee B, Gaillard G, Nemecek T, Schneider A et al (2010) Designing sustainable crop rotations using life cycle assessment of crop combinations in 9th European IFSA symposium, ViennaGoogle Scholar
  75. Heringa RJ, Van Norel A, Tazelaar MF (1969) Resistance to powdery mildew (Erysiphe polygoni D.C.) in peas (Pisum sativum L.). Euphytica 18:163–169CrossRefGoogle Scholar
  76. Hodgson EW, Kemis M, Geisinger B (2012) Assessment of Iowa soybean growers for insect pest management practices. J Ext 50:4RIB6Google Scholar
  77. Hunter PJ, Ellis N, Taylor JD (2001) Association of dominant loci for resistance to Pseudomonas syringae pv. pisi with linkage groups II, VI and VII of Pisum sativum. Theor Appl Genet 103:129–135.  https://doi.org/10.1007/s001220100566 CrossRefGoogle Scholar
  78. Hussain M, Jang KH, Farooq M, Lee DJ (2012) Morphological and physiological evaluation of Korean rice genotypes for salt resistance. Int J Agric Biol 14:970–974Google Scholar
  79. ICTV dB Management (2006) ICTVdB–the universal virus database, version 4. Columbia University, New YorkGoogle Scholar
  80. Iglesias-García R, Prats E, Fondevilla S, Satovic Z, Rubiales D (2015) Quantitative trait loci associated to drought adaptation in pea (Pisum sativum L.). Plant Mol Biol Report:1–11.  https://doi.org/10.1007/s11105-015-0872-z CrossRefGoogle Scholar
  81. Infantino A, Kharrat M, Riccioni L, Coyne CJ, McPhee KE, Grunwald NJ (2006) Screening techniques and sources of resistance to root diseases in cool season food legumes. Euphytica 147:201–221CrossRefGoogle Scholar
  82. Jain A, Singh A, Singh S, Singh V, Singh HB (2015) Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum. J Plant Physiol 182:79–94CrossRefGoogle Scholar
  83. Janila P, Sharma B (2004) RAPD and SCAR markers for powdery mildew resistance gene er in pea. Plant Breed 123:271–274CrossRefGoogle Scholar
  84. Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJR et al (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron Sustain Dev 32:329–364.  https://doi.org/10.1007/s13593-011-0056-7 CrossRefGoogle Scholar
  85. Jha AB, Warkentin TD, Gurusamy V, Tar’an B, Banniza S (2012) Identification of ascochyta blight resistance in wild Pisum species for use in pea breeding. Crop Sci 52:2462–2468.  https://doi.org/10.2135/cropsci2012.04.0242 CrossRefGoogle Scholar
  86. Jha AB, Arganosa G, Tar’An B, Diederichsen A, Warkentin TD (2013) Characterization of 169 diverse pea germplasm accessions for agronomic performance, Mycosphaerella blight resistance and nutritional profile. Genet Resour Crop Evol 60:747–761.  https://doi.org/10.1007/s10722-012-9871-1 CrossRefGoogle Scholar
  87. Jha AB, Tar’an B, Stonehouse R, Warkentin TD (2016) Identification of QTLs associated with improved resistance to ascochyta blight in an interspecific pea recombinant inbred line population. Crop Sci 56:2926–2939.  https://doi.org/10.2135/cropsci2016.01.0001 CrossRefGoogle Scholar
  88. Kabir AH, Paltridge NG, Able AJ, Paull JG, Stangoulis JCR (2012) Natural variation for Fe-efficiency is associated with upregulation of Strategy I mechanisms and enhanced citrate and ethylene synthesis in Pisum sativum L. Planta 235:1409–1419.  https://doi.org/10.1007/s00425-011-1583-9 CrossRefGoogle Scholar
  89. Kalo P, Seres A, Taylor SA, Jakab J, Kevei Z, Kereszt A et al (2004) Comparative mapping between Medicago sativa and Pisum sativum. Mol Gen Genomics 272:235–246.  https://doi.org/10.1007/s00438-004-1055-z PMID: 15340836CrossRefGoogle Scholar
  90. Katoch V, Sharma S, Pathania S, Banayal DK, Sharma SK, Rathour R (2010) Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Mol Breed 25:229–237.  https://doi.org/10.1007/s11032-009-9322-7 CrossRefGoogle Scholar
  91. Kaur S, Pembleton LW, Cogan NOI et al (2012) Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genomics 13:104PubMedCentralCrossRefPubMedGoogle Scholar
  92. Khan MRA, Mahmud F, Reza MA, Mahbub MM, Shirazy BJ, Rahman MM (2017) Genetic diversity, correlation and path analysis for yield and yield components of pea (Pisum sativum L.). World J Agric Sci 13:11–16Google Scholar
  93. Khare M, Khare U (2012) Studies on survival of Xanthomonas campestris pv. glycines. Ind Phytopathol 48:180–181Google Scholar
  94. Kraft JM, Dunne B, Goulden D, Armstrong S (1998) A search for resistance in peas to Mycosphaerella pinodes. Plant Dis 82:251–253.  https://doi.org/10.1094/PDIS.1998.82.2.251 CrossRefGoogle Scholar
  95. Kulaeva OA, Zhernakov AI, Afonin AM, Boikov SS, Sulima AS et al (2017) Pea Marker Database (PMD): a new online database combining known pea (Pisum sativum L.) gene-based markers. PLoS One 12:e0186713.  https://doi.org/10.1371/journal.pone.0186713 CrossRefPubMedCentralPubMedGoogle Scholar
  96. Kumar PL, Kumari SMG, Waliyar F (2008a) Virus disease Studies on survival of Xanthomonas campestris pv. glycines. Ind Phytopathol 48:180–181Google Scholar
  97. Kumar PL, Prasada Rao RDVJ, Reddy AS, Madhavi KJ, Anitha K, Waliyar F (2008b) Emergence and spread of Tobacco streak virus menace in Indian and control strategies. Indian J Plant Protect 36:1–8Google Scholar
  98. Kumar PL, Jones AT, Waliyar F (2008c) Virus diseases of pegionpea. In: Rao GP, Kumar PL, Holguin-Peña RJ (eds) Vegetable and pulse crops: Vol. 3. Characterization, diagnosis and management of plant viruses. Studium Press LLC, Hardcover, pp 235–258Google Scholar
  99. Kumar JK, Prasad A, Richard SA (2012) In vitro antioxidant activity and preliminary phytochemical analysis of medicinal legumes. J Pharm Res 5:3059–3062Google Scholar
  100. Leach M, Agudelo P, Lawton-Rauh A (2012) Genetic variability of Rotylenchulus reniformis. Plant Dis 96:30–36CrossRefGoogle Scholar
  101. Lejeune-Hénaut I, Hanocq E, Bethencourt L, Fontaine V, Delbreil B, Morin J et al (2008) The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L. Theor Appl Genet 116:1105–1116.  https://doi.org/10.1007/s00122-008-0739-x CrossRefGoogle Scholar
  102. Leonforte A, Forster JW, Redden RJ, ME N, Salisbury PA (2013a) Sources of high tolerance to salinity in pea (Pisum sativum L.). Euphytica 189:203–216.  https://doi.org/10.1007/s10681-012-0771-4 CrossRefGoogle Scholar
  103. Leonforte A, Sudheesh S, Cogan NOI, Salisbury PA, Nicolas ME, Materne M et al (2013b) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13:161.  https://doi.org/10.1186/1471-2229-13-161 CrossRefPubMedCentralPubMedGoogle Scholar
  104. Lewis G, Schrire B, Mackind B, Lock M (2005) Legumes of the world. Royal Botanic Gardens, KewGoogle Scholar
  105. Liu R, Fang L, Yang T, Zhang X, Hu J et al (2017) Marker-trait association analysis of frost tolerance of 672 worldwide pea (Pisum sativum L.) collections. Sci Rep 7:5919.  https://doi.org/10.1038/s41598-017-06222-y CrossRefPubMedCentralPubMedGoogle Scholar
  106. Loebenstein G, Thottappilly G (eds) (2003) Virus and virus-like diseases of major crops in developing countries, vol 800. Kluwer Academic Publishers, DordrechtGoogle Scholar
  107. Lombardo S, Colombo A, Rapisarda C (2011) Severe damage caused by Meloidogyne artiellia on cereals and leguminous in Sicily. Redia 94:149–151Google Scholar
  108. Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G et al (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031.  https://doi.org/10.1007/s00122-005-0014-3 CrossRefGoogle Scholar
  109. Ma Y, Coyne CJ, Grusak MA, Mazourek M, Cheng P et al (2017) Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.). BMC Plant Biol 17:43.  https://doi.org/10.1186/s12870-016-0956-4 CrossRefPubMedCentralPubMedGoogle Scholar
  110. Macas J, Neumann P, Navrátilová A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: Comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8.  https://doi.org/10.1186/1471-2164-8-427 PubMedCentralCrossRefPubMedGoogle Scholar
  111. Macwilliam S, Wismer M, Kulshreshtha S (2014) Life cycle an economic assessment of Western Canadian pulse systems: the inclusion of pulses in crop rotations. Agric Syst 123:43–53.  https://doi.org/10.1016/j.agsy.2013.08.009 CrossRefGoogle Scholar
  112. Malathi VG, John P (2008) Gemini viruses infecting legumes. In: Rao GP, Kumar PL, Holguin-Peña RJ (eds) Vegetable and pulse crops: Vol. 3. Characterization, diagnosis and management of plant viruses. Studium Press LLC, Hardcover, pp 97–123Google Scholar
  113. Mandal B, Jain RK, Krishnareddy M, Krishna Kumar NK, Ravi KS, Pappu HR (2012) Emerging problems of Tospoviruses (Bunyaviridae) and their management in the Indian Subcontinent. Plant Dis 96:468–479CrossRefGoogle Scholar
  114. Maqbool A, Shafiq S, Lake L (2010) Radiant frost tolerance in pulse crops-a review. Euphytica 172:1–12CrossRefGoogle Scholar
  115. McGee RJ, Coyne CJ, Pilet-Nayel ML, Moussart A, Tivoli B, Baranger A et al (2012) Registration of pea germplasm lines partially resistant to aphanomyces root rot for breeding fresh or freezer pea and dry pea types. J Plant Regist 6:203–207.  https://doi.org/10.3198/jpr2011.03.0139crg CrossRefGoogle Scholar
  116. McPhee KE, Inglis DA, Gundersen B, Coyne CJ (2012) Mapping QTL for Fusarium wilt Race 2 partial resistance in pea (Pisum sativum). Plant Breed 131:300–306.  https://doi.org/10.1111/j.1439-0523.2011.01938.x CrossRefGoogle Scholar
  117. Mehrkhou F, Talebi AA, Moharramipour S, Naveh VH (2012) Demographic parameters of Spodoptera exigua (Lepidoptera: Noctuidae) on different soybean cultivars. Environ Entomol 41:326–332CrossRefGoogle Scholar
  118. Menon M, Barnes WJ, Olson MS (2015) Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season. New Phytol 207:710–722CrossRefGoogle Scholar
  119. Mishra RK, Gangadhar BH, Nookaraju A, Kumar S, Park SW (2012) Development of EST-derived SSR markers in pea (Pisum sativum) and their potential utility for genetic mapping and transferability. Plant Breed 131:118–124.  https://doi.org/10.1111/j.1439-0523.2011.01926.x CrossRefGoogle Scholar
  120. Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJV (2000) Bean a-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci U S A 97(8):3820–3825 10.1073ypnas.070054597PubMedCentralCrossRefPubMedGoogle Scholar
  121. Munjal RL, Chenulu VV, Hora TS (1963) Assessment of losses due to powdery mildew (Erysiphe polygoni) on pea. Indian Phytopathol 19:260–267Google Scholar
  122. Murray MG, Cuellar RE, Thompson WF (1978) DNA sequence organization in the pea genome. Biochemistry 17:5781–5790CrossRefGoogle Scholar
  123. Musser FR, Catchot AL, Gibson BK, Knighten KS (2011) Economic injury levels for southern green stink bugs (Hemiptera: Pentatomidae) in R7 growth stage soybeans. Crop Prot 30:63–69CrossRefGoogle Scholar
  124. Nemecek T, Kägi T (2007) Life cycle inventories of Swiss and European agricultural production systems. In: Final Report Ecoinvent V2. 0 No 15a. Agroscope Reckenholz-Tänikon Research Station ART. Swiss Centre for Life Cycle Inventories, Zurich/Dübendorf. SimaPro Ph.D, 7.Google Scholar
  125. Nemecek T, Von Richthofen JS, Dubois G Casta P, Charles R, Pahl H (2008) Environmental impacts of introducing grain legumes into European crop rotations. Eur J Agron 28:380–393.  https://doi.org/10.1016/j.eja.2007.11.004 CrossRefGoogle Scholar
  126. Nene YL, Reddy MV (1987) Chickpea diseases and their control. In: Saxena MC, Singh KB (eds) The Chickpea. CAB International, Oxon, UK, pp 233–270Google Scholar
  127. Neumann P, Navratilova A, Koblizkova A, Kejnovsky E, Hribova E, Hobza R, Widmer A, Dolezel J, Macas J (2011) Plant centromeric retrotransposons: A structural and cytogenetic perspective. Mob DNA 2.  https://doi.org/10.1186/1759-8753-2-4 PubMedCentralCrossRefPubMedGoogle Scholar
  128. Nifantova SN, Simonenko IV, Komarnitskiĭ IK, Kuchuk NV (2005) Production of transgenic pea (Pisum sativum L.) plants resistant to the herbicide pursuit. Tsitol Genet 39(2):16–21Google Scholar
  129. Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinforma 11.  https://doi.org/10.1186/1471-2105-11-378 PubMedCentralCrossRefPubMedGoogle Scholar
  130. Ondřej M, Dostálová R, Odstrčilová L (2005) Response of Pisum sativum germplasm resistant to Erysiphe pisi to inoculation with Erysiphe baeumleri, a new pathogen of peas. Plant Prot Sci 41:95–103Google Scholar
  131. Pal AB, Brahmappa RDR, Ullasa BA (1980) Field resistance of pea germplasm to powdery mildew (Erysiphe polygoni) and rust (Uromyces fabae). Plant Dis 64:1085–1086CrossRefGoogle Scholar
  132. Pereira G, Leitão J (2010) Two powdery mildew resistance mutations induced by ENU in Pisum sativum L. affect the locus er1. Euphytica 171(3):345–354CrossRefGoogle Scholar
  133. Petkova V, Nikolova V, Kalapchieva SH, Stoeva V, Topalova E, Angelova S (2009) Physiological response and pollen viability of Pisum sativum genotypes under high temperature influence. Iv Balkan Symp Veg Potato 830:665–671.  https://doi.org/10.17660/actahortic.2009.830.96 CrossRefGoogle Scholar
  134. Pilet-Nayel L, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2002) Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor Appl Genet 106:28–39CrossRefPubMedPubMedCentralGoogle Scholar
  135. Pilet-Nayel ML, Muehlbauer FJ, McGee RJ, Kraft JM, Baranger A, Coyne CJ (2005) Consistent quantitative trait loci in pea for partial resistance to Aphanomyces euteiches isolates from the United States and France. Phytopathology 95:1287–1293.  https://doi.org/10.1094/PHYTO-95-1287 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Prioul S, Frankewitz A, Deniot G, Morin G, Baranger A (2004) Mapping of quantitative trait loci for partial resistance to Ascochyta pinodes in pea (Pisum sativum L.) at the seedling and adult plant stages. Theor Appl Genet 108:1322–1334.  https://doi.org/10.1007/s00122-003-1543-2 CrossRefGoogle Scholar
  137. Puonti-Kaerlas J, Eriksson T, Engström P (1990) Production of transgenic pea (Pisum sativum L.) plants by Agrobacterium tumefaciens – mediated gene transfer. Theor Appl Genet 80:246–252Google Scholar
  138. Quintero JM, Fournier JM, Benlloch M (2007) Na+ accumulation in shoot is related to water transport in K+-starved sunflower plants but not in plants with a normal K+ status. J Plant Physiol 164:60–67CrossRefPubMedPubMedCentralGoogle Scholar
  139. Radchuk R, Emery NJR, Weier D, Vigeolas H, Geigenberger P, Lunn JE, Feil R, Weschke W, Weber H (2010) Sucrose non-fermenting kinase 1 (SnRK1) coordinates metabolic and hormonal signals during pea cotyledon growth and differentiation. Plant J 61(324):338Google Scholar
  140. Rai R, Singh AK, Singh BD, Joshi AK, Chand R, Srivastava CP (2011) Molecular mapping for resistance to pea rust caused by Uromyces fabae (Pers.) de-Bary. Theor Appl Genet 123:803–813.  https://doi.org/10.1007/s00122-011-1628-2 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Rana JC, Rana M, Sharma V, Nag A, Rakesh K, Chahota RK, Sharma TR (2016) Genetic diversity and structure of pea (Pisum sativum L.) germplasm based on morphological and SSR markers. Plant Mol Biol Report.  https://doi.org/10.1007/s11105-016-1006-y CrossRefGoogle Scholar
  142. Rashid A, Khan RU, Marwat SK (2009) Importance of weed control in chickpea under rainfed condition. Am Eurasian J Agric Environ Sci 5:456–459Google Scholar
  143. Riebeseel E, Häusler RE, Radchuk R, Meitzel T, Hajirezaei MR, Emery RJN, Küster H, Nunes-Nesi A, Fernie AR, Weschke W et al (2010) The 2-oxoglutarate/malate translocator mediates amino acid and storage protein biosynthesis in pea embryos. Plant J 61:350–363CrossRefPubMedPubMedCentralGoogle Scholar
  144. Rubiales D, Emeran AA, Sillero JC (2002) Rusts on legumes in Europe and North Africa. Grain Legumes 37:8–9Google Scholar
  145. Rubiales D, P’erez-de-Luque A, Sillero JC, Rom´an B, Kharrat M, Khalil S, Joel DM, Riches C (2006) Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica 147:187–199CrossRefGoogle Scholar
  146. Salinas J, Matassi G, Montero LM, Bernardi G (1988) Compositional compartmentalization and compositional patterns in the nuclear genomes of plants. Nucleic Acids Res 16:4269–4285PubMedCentralCrossRefPubMedGoogle Scholar
  147. Sastry KS, Zitter TA (2014) Management of virus and viroid diseases of crops in the tropics, Chapter 2. In: Plant virus and viroid diseases in the tropics, vol 1. Springer Science+Business Media B.V., pp 149–480Google Scholar
  148. Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221PubMedCentralCrossRefPubMedGoogle Scholar
  149. Sharma N (1992) Evaluation of varietal susceptibility in pea to Erysiphe polygoni. Ann Appl Biol 120:110–111Google Scholar
  150. Sillero JC, Fondevilla S, Davidson J, Vaz Patto MC, Warkentin TD, Thomas J, Rubiales D (2006) Screening techniques and sources of resistance to rusts and mildews in grain legumes. Euphytica 147:255–272CrossRefGoogle Scholar
  151. Sindhu A, Ramsay L, Sanderson LA, Stonehouse R, Li R, Condie J et al (2014) Gene-based SNP discovery and genetic mapping in pea. Theor Appl Genet 127:2225–2241.  https://doi.org/10.1007/s00122-014-2375-y CrossRefPubMedCentralPubMedGoogle Scholar
  152. Smitchger JA, Burke IC, Yenish JP (2012) The critical period of weed control in lentil (Lens culinaris) in the pacific Northwest. Weed Sci 60:81–85CrossRefGoogle Scholar
  153. Smýkal P, Aubert G, Burstin J, Coyne CJ, Ellis NTH et al (2012) Pea (Pisum sativum L.) in the genomic era. Agronomy 2:74–115.  https://doi.org/10.3390/agronomy2020074 CrossRefGoogle Scholar
  154. Subbarao GV, Johansen C (1994) Strategies and scope for improving salinity tolerance in crop plants. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 559–579Google Scholar
  155. Sudheesh S, Lombardi M, Leonforte A, Cogan NOI, Materne M, Forster JW et al (2014) Consensus genetic map construction for field pea (Pisum sativum L.), trait dissection of biotic and abiotic stress tolerance and development of a diagnostic marker for the er1 powdery mildew resistance gene. Plant Mol Biol Report 33:1391–1403.  https://doi.org/10.1007/s11105-014-0837-7 CrossRefGoogle Scholar
  156. Sun X, Yang T, Hao J, Zhang X, Ford R, Jiang J et al (2014) SSR genetic linkage map construction of pea (Pisum sativum L.) based on Chinese native varieties. Crop J 2:170–174.  https://doi.org/10.1016/j.cj.2014.03.004 CrossRefGoogle Scholar
  157. Sun S, Fu H, Wang Z, Duan C, Zong X, Zhu Z (2016) Discovery of a novel er1 allele conferring powdery mildew resistance in Chinese pea (Pisum sativum L.) Landraces. PLoS One 11(1):e0147624.  https://doi.org/10.1371/journal.pone.0147624 CrossRefPubMedCentralPubMedGoogle Scholar
  158. Svabova L, Smýkal P, Griga M, Ondrej V (2005) Agrobacterium-mediated transformation of Pisum sativum in vitro and in vivo. Biol Plant 49:361–370CrossRefGoogle Scholar
  159. Sweetingham MW, Jones RAC, Brown AGP (1998) Diseases and pests. In: Gladstones JS, Atkins C, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International, Wallingford, pp 263–290Google Scholar
  160. Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Balde S et al (2003) Quantitative trait loci for lodging resistance, plant height and partial resistance to ascochyta blight in field pea (Pisum sativum L.). Theor Appl Genet 107:1482–1491.  https://doi.org/10.1007/s00122-003-1379-9 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Blade S et al (2004) Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum L.). Euphytica 136:297–306.  https://doi.org/10.1023/B:EUPH.0000032721.03075.a0 CrossRefGoogle Scholar
  162. Tayeh N, Aubert G, Pilet-Nayel M-L, Lejeune-Hénaut I, Warkentin TD, Burstin J (2015a) Genomic tools in pea breeding programs: status and perspectives. Front Plant Sci 6:1037PubMedCentralPubMedGoogle Scholar
  163. Tayeh N, Klein A, Le Paslier MC, Jacquin F, Houtin H, Rond C et al (2015b) Genomic prediction in pea: effect of marker density and training population size and composition on prediction accuracy. Front Plant Sci 6:941.  https://doi.org/10.3389/fpls.2015.00941 CrossRefPubMedCentralPubMedGoogle Scholar
  164. Thakur BR, Kapoor AS, Jamwal RS (1996) Varietal resistance of pea to powdery mildew in dry temperature zone of Himachal Pradesh. Indian Phytopathol 49:92–93Google Scholar
  165. Timmerman GM, Frew TJ, Weeden NF, Miller AL, Goulden DS (1994) Linkage analysis of er-1, a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C.). Theor Appl Genet 88:1050–1055CrossRefPubMedPubMedCentralGoogle Scholar
  166. Timmerman-Vaughan GM, McCallum JA, Frew TJ, Weeden NF, Russell AC (1996) Linkage mapping of quantitative trait loci controlling seed weight in pea (Pisum sativum L). Theor Appl Genet 93:431–439.  https://doi.org/10.1007/BF00223187 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Timmerman-Vaughan GM, Frew TJ, Russell AC, Khan T, Butler R, Gilpin M et al (2002) QTL mapping of partial resistance to field epidemics of ascochyta blight of pea. Crop Sci 42:2100–2111.  https://doi.org/10.2135/cropsci2002.2100 CrossRefGoogle Scholar
  168. Timmerman-Vaughan GM, Frew TJ, Butler R, Murray S, Gilpin M, Falloon K et al (2004) Validation of quantitative trait loci for Ascochyta blight resistance in pea (Pisum sativum L.), using populations from two crosses. Theor Appl Genet 109:1620–1631.  https://doi.org/10.1007/s00122-004-1779-5 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Tivoli B, Baranger A, Avila CM, Banniza S, Barbetti M, Chen W, Davidson J, Lindeck K, Kharrat M, Rubiales D, Sadiki M, Sillero JC, Sweetingham M, Muehlbauer FJ (2006) Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica 147:223–253CrossRefGoogle Scholar
  170. Tiwari KR, Penner GA, Warkentin TD (1998) Identification of coupling and repulsion phase markers for powdery mildew resistance genes er1 in pea. Genome 41:440–444CrossRefGoogle Scholar
  171. Tiwari KR, Penner GA, Warkentin TD (1999) Identification of AFLP markers for powdery mildew resistance gene er2 in pea. Pisum Genet 31:27–29Google Scholar
  172. Ubayasena L, Bett K, Tar’an B, Warkentin T (2011) Genetic control and identification of QTLs associated with visual quality traits of field pea (Pisum sativum L.). Genome 54:261–272.  https://doi.org/10.1139/g10-117 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Valderrama MR, Roman B, Satovic Z, Rubiales D, Cubero JI, Torres AM (2004) Locating quantitative trait loci associated with Orobanche crenata resistance in pea. Weed Res 44:323–328.  https://doi.org/10.1111/j.1365-3180.2004.00406.x CrossRefGoogle Scholar
  174. Van der Linden L, Bredenkamp J, Naidoo S et al (2013) Gene for- gene tolerance to bacterial wilt in Arabidopsis. Mol Plant-Microbe Interact 26:398–406CrossRefPubMedPubMedCentralGoogle Scholar
  175. van Leur JAG, Aftab M, Leonforte B, Moore S, Freeman AJ (2007) Control of pea seed borne mosaic virus in field pea through resistance breeding. In: Proceedings 16th Biennial Conference of the Australasian Plant Pathology Society, Adelaide, 2007.Google Scholar
  176. Viteri D, Cabrera I, De E, Jensen C (2009) New record of Thrips species associated with soybeans in Puerto Rico. Florida Entomol 92:181–185CrossRefGoogle Scholar
  177. Vovlas N, Troccoli A, Palomares-Rius J et al (2011) Ditylenchus gigas spp. parasitizing broad bean: a new stem nematode singled out from the Ditylenchus dipsaci species complex using apolyphasic approach with molecular phylogeny. Plant Pathol 60:762–777CrossRefGoogle Scholar
  178. Wang Z, Luo Y, Li X, Wang L, Xu S, Yang J et al (2008) Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proc Natl Acad Sci U S A 105:10414–10419PubMedCentralCrossRefPubMedGoogle Scholar
  179. Warkentin TD, Rashid KY, Xue AG (1996) Fungicidal control of powdery mildew in field pea. Can J Plant Sci 76:933–935CrossRefGoogle Scholar
  180. Warkentin TD, Smykal P, Coyne CJ, Weeden N, Domoney C, Bing D et al (2015) Pea (Pisum sativum L.). In: De Ron AM (ed) Grain Legumes, Handbook of Plant Breeding. Springer Science+Business Media, New York, pp 37–83CrossRefGoogle Scholar
  181. Weeden NF, Porter L (2007) The genetic basis of Fusarium root rot tolerance in the ‘Afghanistan’ pea. Pisum Genet 39:35–36Google Scholar
  182. Weeden NF, Ellis THN, Timmerman-Vaughan GM, Swiecicki WK, Rozov SM, Berdnikov VA (1998) A consensus linkage map for Pisum sativum. Pisum Genet 30:1–4Google Scholar
  183. Weeden NF, McGee R, Grau CR, Muehlbauer FJ (2000) A gene influencing tolerance to common root rot is located on linkage group IV. Pisum Genet 32:53–55Google Scholar
  184. Weeden NF, Brauner S, Przyborowski JA (2002) Genetic analysis of pod dehiscence in pea (Pisum sativum L.). Cell Mol Biol Lett 7:657–663Google Scholar
  185. Weigelt K, Kuster H, Radchuk R, Muller M, Weichert H, Fait A, Fernie AR, Saalbach I, Weber H (2008) Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism, and highlights the importance of mitochondrial metabolism. Plant J 55:909–926CrossRefGoogle Scholar
  186. Weigelt K, Küster H, Rutten T, Fait A, Fernie AR, Miersch O, Wasternack C, Emery RJN, Desel C, Hosein F et al (2009) ADP-glucose pyrophosphorylase-deficient pea embryos reveal specific transcriptional and metabolic changes of carbon-nitrogen metabolism and stress responses. Plant Physiol 149:395–411PubMedCentralCrossRefPubMedGoogle Scholar
  187. Wroth JM (1998) Possible role for wild genotypes of Pisum spp. to enhance ascochyta blight resistance in pea. Aust J Exp Agric 38:469–479.  https://doi.org/10.1071/EA98024 CrossRefGoogle Scholar
  188. Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902CrossRefGoogle Scholar
  189. Xu R, Li W, Zhang LF, Lin YH, Qi B, Xing H (2010) A study on the inheritance of resistance to whitefly in soybean. Sci Agric Sin 43:72–78Google Scholar
  190. Yang T, Fang L, Zhang X, Hu J, Bao S, Hao J et al (2015) High-throughput development of SSR markers from pea (Pisum sativum L.) based on next generation sequencing of a purified Chinese commercial variety. PLoS One 10:e0139775.  https://doi.org/10.1371/journal.pone.0139775 CrossRefPubMedCentralPubMedGoogle Scholar
  191. Zhang R, Hwang SF, Chang KF, Gossen BD, Strelkov SE, Turnbull GD et al (2006) Genetic resistance to Ascochyta pinodes in 558 field pea accessions. Crop Sci 46:2409–2414.  https://doi.org/10.2135/cropsci2006.02.0089 CrossRefGoogle Scholar
  192. Zhuang X, McPhee KE, Coram TE, Peever TL, Chilvers MI (2012) Rapid transcriptome characterization and parsing of sequences in a non-model host-pathogen interaction; pea- Sclerotinia sclerotiorum. BMC Genomics 13:668PubMedCentralCrossRefPubMedGoogle Scholar
  193. Zhukov VA, Zhernakov AI, Kulaeva OA, Ershov NI, Borisov AY, Tikhonovich IA. (2015) De Novo Assembly of the Pea (Pisum sativum L.) Nodule Transcriptome. International Journal of Genomics. 695947. https://doi.org/10.1155/2015/695947 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Reetika Mahajan
    • 1
  • Aejaz Ahmad Dar
    • 1
  • Shazia Mukthar
    • 1
  • Sajad Majeed Zargar
    • 2
  • Susheel Sharma
    • 1
  1. 1.School of Biotechnology, Sher-e-Kashmir University of Agricultural Science and Technology of JammuChatha, JammuIndia
  2. 2.Division of Biotechnology, Sher-e-Kashmir University of Agricultural Science and Technology of KashmirShalimar, SrinagarIndia

Personalised recommendations