Advertisement

Genome Engineering Tools for Functional Genomics and Crop Improvement in Legumes

  • Rashi Khandelwal
  • Mukesh JainEmail author
Chapter

Abstract

Deteriorating environmental conditions and ever-increasing population have led to one of the biggest challenges of producing food sufficient to feed the world. New methods/tools are required to generate high-yielding crop plants to meet the food demand of the world population. Legumes are very important food crops especially in the developing countries. Genome-editing methods, like zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9), can serve as important tools in studying the role of legume genes in controlling various agronomic traits, such as resistance/tolerance to biotic and abiotic stresses, nitrogen fixation, desired oil accumulation in seeds, etc. in legumes. These methods along with bioinformatics tools are being used to generate new genetic variations via deleting/editing endogenous gene sequence(s), which are involved in various cellular and/or metabolic pathways to enhance crop productivity. These methods can also be used to add and/or delete transgenes from the existing transgenic events. Genome engineering technologies have a promising future in legume genome editing owing to their efficacy and versatility.

Keywords

Legumes Genome editing CRISPR/Cas9 TALEN ZFN 

Notes

Acknowledgments

Work on CRISPR-Cas9-based genome editing in the author’s laboratory is funded by the Science and Engineering Research Board (File no. EMR/2016/001311), Department of Science & Technology, Government of India, New Delhi.

References

  1. Abdallah NA, Prakash CS, McHughen AG (2015) Genome editing for crop improvement: challenges and opportunities. GM Crops Food 6:183–205.  https://doi.org/10.1080/21645698.2015.1129937 CrossRefPubMedGoogle Scholar
  2. Akhtar S, Khalid N, Ahmed I, Shahzad A, Suleria HAR (2014) Physicochemical characteristics, functional properties, and nutritional benefits of peanut oil: a review. Crit Rev Food Sci Nutr 54:1562–1575.  https://doi.org/10.1080/10408398.2011.644353 CrossRefPubMedGoogle Scholar
  3. Anai T, Yamada T, Kinoshita T, Rahman SM, Takagi Y (2005) Identification of corresponding genes for three low-α-linolenic acid mutants and elucidation of their contribution to fatty acid biosynthesis in soybean seed. Plant Sci 168:1615–1623.  https://doi.org/10.1016/j.plantsci.2005.02.016 CrossRefGoogle Scholar
  4. Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8:1932.  https://doi.org/10.3389/fpls.2017.01932 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Atif RM, Svabova L, Ondrej V, Klenoticova H, Jacas L, Griga M, Ochatt SJ (1962) Progress in botany. Nature 194:1023–1023.  https://doi.org/10.1038/1941023a0 CrossRefGoogle Scholar
  6. Barker DG, Bianchi S, Blondon F, Dattée Y, Duc G, Essad S, Flament P, Gallusci P, Génier G, Guy P, Muel X, Tourneur J, Dénarié J, Huguet T (1990) Medicago truncatula, a model plant for studying the molecular genetics of theRhizobium-legume symbiosis. Plant Mol Biol Report 8:40–49.  https://doi.org/10.1007/BF02668879 CrossRefGoogle Scholar
  7. Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21:289–297.  https://doi.org/10.1128/MCB.21.1.289-297.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brown AV, Hudson KA (2017) Transcriptional profiling of mechanically and genetically sink-limited soybeans. Plant Cell Environ 40:2307–2318.  https://doi.org/10.1111/pce.13030 CrossRefPubMedGoogle Scholar
  9. Carroll D, Beumer KJ (2014) Genome engineering with TALENs and ZFNs: repair pathways and donor design. Methods 69:137–141.  https://doi.org/10.1016/j.ymeth.2014.03.026 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Catalanotto C, Cogoni C, Zardo G (2016) MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 17.  https://doi.org/10.3390/ijms17101712 CrossRefGoogle Scholar
  11. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491.  https://doi.org/10.1016/j.cell.2013.12.001 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chi X, Yang Q, Pan L, Chen M, He Y, Yang Z, Yu S (2011) Isolation and characterization of fatty acid desaturase genes from peanut (Arachis hypogaea L.). Plant Cell Rep 30:1393–1404.  https://doi.org/10.1007/s00299-011-1048-4 CrossRefPubMedGoogle Scholar
  13. Comella P, Pontvianne F, Lahmy S, Vignols F, Barbezier N, DeBures A, Jobet E, Brugidou E, Echeverria M, Sáez-Vásquez J (2008) Characterization of a ribonuclease III-like protein required for cleavage of the pre-rRNA in the 3′ETS in Arabidopsis. Nucleic Acids Res 36:1163–1175.  https://doi.org/10.1093/nar/gkm1130 CrossRefPubMedGoogle Scholar
  14. Copley TR, Aliferis KA, Kliebenstein DJ, Jabaji SH (2017) An integrated RNAseq-1H NMR metabolomics approach to understand soybean primary metabolism regulation in response to Rhizoctonia foliar blight disease. BMC Plant Biol 17:1–18.  https://doi.org/10.1186/s12870-017-1020-8 CrossRefGoogle Scholar
  15. Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, Reyon D, Dahlborg EJ, Goodwin MJ, Coffman AP, Dobbs D, Joung JK, Voytas DF, Stupar RM (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156:466–473.  https://doi.org/10.1104/pp.111.172981 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Curtin SJ, Michno J-M, Campbell BW, Gil-Humanes J, Mathioni SM, Hammond R, Gutierrez-Gonzalez JJ, Donohue RC, Kantar MB, Eamens AL, Meyers BC, Voytas DF, Stupar RM (2015) MicroRNA maturation and microRNA target gene expression regulation are severely disrupted in soybean dicer-like1 double mutants. G3: Genes Genomes Genetics (Bethesda) 6:423–433.  https://doi.org/10.1534/g3.115.022137 CrossRefGoogle Scholar
  17. Curtin SJ, Xiong Y, Michno JM, Campbell BW, Stec AO, Čermák T, Starker C, Voytas DF, Eamens AL, Stupar RM (2017) CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula. Plant Biotechnol J 16:1125–1137.  https://doi.org/10.1111/pbi.12857 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dash S, Campbell JD, Cannon EKS, Cleary AM, Huang W, Kalberer SR, Karingula V, Rice AG, Singh J, Umale PE, Weeks NT, Wilkey AP, Farmer AD, Cannon SB (2016) Legume information system (LegumeInfo.org): a key component of a set of federated data resources for the legume family. Nucleic Acids Res 44:D1181–D1188.  https://doi.org/10.1093/nar/gkv1159 CrossRefPubMedGoogle Scholar
  19. Davies JP, Kumar S, Sastry-Dent L (2017) Use of zinc-finger nucleases for crop improvement, 1st edn. Elsevier Inc. Dow AgroSciences, Indianapolis, IN, United States.  https://doi.org/10.1016/bs.pmbts.2017.03.006 Google Scholar
  20. de Faria SM, Diedhiou AG, de Lima HC, Ribeiro RD, Galiana A, Castilho AF, Henriques JC (2010) Evaluating the nodulation status of leguminous species from the Amazonian forest of Brazil. J Exp Bot 61:3119–3127.  https://doi.org/10.1093/jxb/erq142 CrossRefPubMedGoogle Scholar
  21. Demorest ZL, Coffman A, Baltes NJ, Stoddard TJ, Clasen BM, Luo S, Retterath A, Yabandith A, Gamo ME, Bissen J, Mathis L, Voytas DF, Zhang F (2016) Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol 16:1–8.  https://doi.org/10.1186/s12870-016-0906-1 CrossRefGoogle Scholar
  22. Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu J, Shi Y, Yan N (2012) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335:720–723.  https://doi.org/10.1126/science.1215670 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dixon RA, Liu C, Jun JH (2013) Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Biotechnol 24:329–335.  https://doi.org/10.1016/j.copbio.2012.07.004 CrossRefGoogle Scholar
  24. Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H, Cheng H, Yu D (2016) Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotechnol 217:90–97.  https://doi.org/10.1016/j.jbiotec.2015.11.005 CrossRefPubMedGoogle Scholar
  25. Enríquez P (2016) CRISPR-mediated epigenome editing. Yale J Biol Med 89:471–486PubMedPubMedCentralGoogle Scholar
  26. Fichtner F, Urrea Castellanos R, Ülker B (2014) Precision genetic modifications: a new era in molecular biology and crop improvement. Planta 239:921–939.  https://doi.org/10.1007/s00425-014-2029-y CrossRefPubMedGoogle Scholar
  27. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826.  https://doi.org/10.1038/nbt.2623 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fujii W, Kawasaki K, Sugiura K, Naito K (2013) Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic Acids Res 41:e187.  https://doi.org/10.1093/nar/gkt772 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gaj T (2014) ZFN, TALEN and CRISPR/Cas based methods for genome engineering. Trends Biotechnol 31:397–405.  https://doi.org/10.1016/j.tibtech.2013.04.004.ZFN CrossRefGoogle Scholar
  30. Garg R, Jain M (2013) Transcriptome analyses in legumes: a resource for functional genomics. Plant Genome 6.  https://doi.org/10.3835/plantgenome2013.04.0011 CrossRefGoogle Scholar
  31. Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, Yadav G, Bhatia S, Chattopadhyay D, Tyagi AK, Jain M (2011) Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physiol 156:1661–1678.  https://doi.org/10.1104/pp.111.178616 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Garg R, Singh VK, Rajkumar MS, Kumar V, Jain M (2017) Global transcriptome and coexpression network analyses reveal cultivar-specific molecular signatures associated with seed development and seed size/weight determination in chickpea. Plant J 91:1088–1107.  https://doi.org/10.1111/tpj.13621 CrossRefPubMedGoogle Scholar
  33. Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877.  https://doi.org/10.1104/pp.017004 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gupta RM, Musunuru K (2014) Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 124:4154–4161.  https://doi.org/10.1172/JCI72992 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2:487–496.  https://doi.org/10.1111/j.1365-313X.1992.00487.x CrossRefGoogle Scholar
  36. Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940.  https://doi.org/10.1111/pbi.12201 CrossRefPubMedGoogle Scholar
  37. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832.  https://doi.org/10.1038/nbt.2647 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hu J, Lei Y, Wong WK, Liu S, Lee KC, He X, You W, Zhou R, Guo JT, Chen X, Peng X, Sun H, Huang H, Zhao H, Feng B (2014) Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res 42:4375–4390.  https://doi.org/10.1093/nar/gku109 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:1–10.  https://doi.org/10.1186/s12896-015-0131-2 CrossRefGoogle Scholar
  40. Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5:1–18.  https://doi.org/10.1101/cshperspect.a012740 CrossRefGoogle Scholar
  41. Joung JK, Voytas DF, Cathomen T (2010) Reply to “Successful genome editing with modularly assembled zinc finger nucleases”. Nat Methods 7(1):91–92. https://doi.org/10.1038/nmeth0210-91b CrossRefGoogle Scholar
  42. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55.  https://doi.org/10.1038/nrm3486 CrossRefPubMedGoogle Scholar
  43. Kamburova VS, Nikitina EV, Shermatov SE, Buriev ZT (2017) Genome editing in plants: an overview of tools and applications. Hindawi Int J Agron 2017:1.  https://doi.org/10.1155/2017/7315351 CrossRefGoogle Scholar
  44. Kang Y, Li M, Sinharoy S, Verdier J (2016) A snapshot of functional genetic studies in Medicago truncatula. Front Plant Sci 7:1175.  https://doi.org/10.3389/fpls.2016.01175 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Karvelis T, Gasiunas G, Young J, Bigelyte G, Silanskas A, Cigan M, Siksnys V (2015) Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol 16:1–13.  https://doi.org/10.1186/s13059-015-0818-7 CrossRefGoogle Scholar
  46. Khatodia S, Bhatotia K, Passricha N, Khurana SMP, Tuteja N (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci 7:506.  https://doi.org/10.3389/fpls.2016.00506 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kim J-S, Lee HJ, Carroll D (2010) Genome editing with modularly assembled zinc-finger nucleases. Nat Methods 7:91 author reply 91–2. https://doi.org/10.1038/nmeth0210-91a CrossRefGoogle Scholar
  48. Kim E, Hwang S, Lee I (2017a) SoyNet: a database of co-functional networks for soybean Glycine max. Nucleic Acids Res 45:D1082–D1089.  https://doi.org/10.1093/nar/gkw704 CrossRefPubMedGoogle Scholar
  49. Kim H, Kim ST, Ryu J, Kang BC, Kim JS, Kim SG (2017b) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:1–7.  https://doi.org/10.1038/ncomms14406 CrossRefGoogle Scholar
  50. Kumar V, Jain M (2015) The CRISPR-Cas system for plant genome editing: advances and opportunities. J Exp Bot 66:47–57.  https://doi.org/10.1093/jxb/eru429 CrossRefPubMedGoogle Scholar
  51. Li L, Wu LP, Chandrasegaran S (1992) Functional domains in Fok I restriction endonuclease. Proc Natl Acad Sci 89:4275–4279.  https://doi.org/10.1073/pnas.89.10.4275 CrossRefPubMedGoogle Scholar
  52. Li J, Wei H, Liu T, Dai X, Zhao PX (2015) LegumeIP: an integrative platform for comparative genomics and transcriptomics of model legumes. Biol Nitrogen Fixat 2(2):807–816.  https://doi.org/10.1002/9781119053095.ch80 CrossRefGoogle Scholar
  53. Maeder ML, Thibodeau-beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-wallace E, Sander JD, Fu F, Pearlberg J, Göbel C, Dassie JP, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, Mc Cray PB Jr, Cathomen T, Voytas DF, Joung JK (2008) NIH public access. Mol Ther 31:294–301.  https://doi.org/10.1016/j.molcel.2008.06.016.Rapid. CrossRefGoogle Scholar
  54. Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK (2009) Oligomerized pool engineering (OPEN): an “open-source” protocol for making customized zinc-finger arrays. Nat Protoc 4:1471–1501.  https://doi.org/10.1038/nprot.2009.98 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mak AN, Bradley P, Cernadas R a, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719.  https://doi.org/10.1126/science.1216211 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mali P, Aach J, Stranges PB, Esvelt KM, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838. https://doi.org/10.1038/nbt.2675 CrossRefGoogle Scholar
  57. Men AE, Laniya TS, Searle IR, Iturbe-Ormaetxe I, Gresshoff I, Jiang Q, Carroll BJ, Gresshoff PM (2002) Fast neutron mutagenesis of soybean (Glycine soja L.) produces a supernodulating mutant containing a large deletion in linkage group H. Genome Lett 1:147–155.  https://doi.org/10.1166/gl.2002.017 CrossRefGoogle Scholar
  58. Michno JM, Wang X, Liu J, Curtin SJ, Kono TJ, Stupar RM (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6:243–252.  https://doi.org/10.1080/21645698.2015.1106063 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM (2014) TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Nat 6:19–40.  https://doi.org/10.1007/s11103-014-0188-7 CrossRefGoogle Scholar
  60. Nithin C, Thomas A, Basak J, Bahadur RP (2017) Genome-wide identification of miRNAs and lncRNAs in Cajanus cajan. BMC Genomics 18:878.  https://doi.org/10.1186/s12864-017-4232-2 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158.  https://doi.org/10.1105/tpc.6.1.147 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pandey MK, Wang ML, Qiao L, Feng S, Khera P, Wang H, Tonnis B, Barkley NA, Wang J, Holbrook CC, Culbreath AK, Varshney RK, Guo B (2014) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet 15:1–14.  https://doi.org/10.1186/s12863-014-0133-4 CrossRefGoogle Scholar
  63. Pannunzio NR, Watanabe G, Lieber MR (2017) Nonhomologous DNA end joining for repair of DNA double-Strand breaks. J Biol Chem.  https://doi.org/10.1074/jbc.TM117.000374 CrossRefGoogle Scholar
  64. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843.  https://doi.org/10.1038/nbt.2673 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Pelletier JM, Kwong RW, Park S, Le BH, Baden R, Cagliari A, Hashimoto M, Munoz MD, Fischer RL, Goldberg RB, Harada JJ (2017) LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proc Natl Acad Sci 114:E6710.  https://doi.org/10.1073/pnas.1707957114 CrossRefPubMedGoogle Scholar
  66. Ramirez CL, Foley JE, Wright DA, Müller-Lerch F, Rahman SH, Cornu TI, Winfrey RJ, Sander JD, Fu F, Townsend JA, Cathomen T, Voytas DF, Joung JK (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5:374–375.  https://doi.org/10.1038/nmeth0508-374 CrossRefPubMedGoogle Scholar
  67. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308.  https://doi.org/10.1038/nprot.2013.143 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Revalska M, Vassileva V, Goormachtig S, Van Hautegem T, Ratet P, Iantcheva A (2011) Recent progress in development of Tnt1 functional genomics platform for Medicago truncatula and Lotus japonicus in Bulgaria. Curr Genomics 12:147–152.  https://doi.org/10.2174/138920211795564313 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480.e8.  https://doi.org/10.1016/j.cell.2017.08.030 CrossRefPubMedGoogle Scholar
  70. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh J-RJ, Joung JK (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8:67–69.  https://doi.org/10.1038/nmeth.1542 CrossRefPubMedGoogle Scholar
  71. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183.  https://doi.org/10.1038/nature08670 CrossRefPubMedGoogle Scholar
  72. Severin AJ, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE, Graham MA, Cannon SB, May GD, Vance CP, Shoemaker RC (2010) RNA-Seq atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160.  https://doi.org/10.1186/1471-2229-10-160 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Singh D, Singh CK, Taunk J, Tomar RSS, Chaturvedi AK, Gaikwad K, Pal M (2017) Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genomics 18:1–20.  https://doi.org/10.1186/s12864-017-3596-7. CrossRefGoogle Scholar
  74. Verdier J, Dessaint F, Schneider C, Abirached-Darmency M (2013a) A combined histology and transcriptome analysis unravels novel questions on Medicago truncatula seed coat. J Exp Bot 64:459–470.  https://doi.org/10.1093/jxb/ers304 CrossRefPubMedGoogle Scholar
  75. Verdier J, Torres-Jerez I, Wang M, Andriankaja A, Allen SN, He J, Tang Y, Murray JD, Udvardi MK (2013b) Establishment of the Lotus japonicus gene expression atlas (LjGEA) and its use to explore legume seed maturation. Plant J 74:351–362.  https://doi.org/10.1111/tpj.12119 CrossRefPubMedGoogle Scholar
  76. Verma M, Kumar V, Patel RK, Garg R, Jain M (2015) CTDB: an integrated chickpea transcriptome database for functional and applied genomics. PLoS One 10:1–10.  https://doi.org/10.1371/journal.pone.0136880 CrossRefGoogle Scholar
  77. Wang L, Wang L, Tan Q, Fan Q, Zhu H, Hong Z, Zhang Z, Duanmu D (2016) Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9. Front Plant Sci 7:1333.  https://doi.org/10.3389/fpls.2016.01333 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wen S, Liu H, Li X, Chen X, Hong Y, Li H, Lu Q, Liang X (2018) TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid. Plant Mol Biol 97:177–185.  https://doi.org/10.1007/s11103-018-0731-z CrossRefPubMedGoogle Scholar
  79. Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey RJ, Hirsh AS, Eichtinger M, Fu F, Porteus MH, Dobbs D, Voytas DF, Joung JK (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 1:1637–1652.  https://doi.org/10.1038/nprot.2006.259 CrossRefPubMedGoogle Scholar
  80. Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:1–12.  https://doi.org/10.1186/s12870-014-0327-y CrossRefGoogle Scholar
  81. Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161:20–27.  https://doi.org/10.1104/pp.112.205179 CrossRefPubMedGoogle Scholar
  82. Zhang K, Raboanatahiry N, Zhu B, Li M (2017) Progress in genome editing technology and its application in plants. Front Plant Sci 8:177.  https://doi.org/10.3389/fpls.2017.00177 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Computational and Integrative Sciences, Jawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations