Advertisement

Local Scheduling in Multi-Agent Systems: Getting Ready for Safety-Critical Scenarios

  • Davide Calvaresi
  • Mauro Marinoni
  • Luca Lustrissimini
  • Kevin Appoggetti
  • Paolo Sernani
  • Aldo F. Dragoni
  • Michael Schumacher
  • Giorgio Buttazzo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10767)

Abstract

Multi-Agent Systems (MAS) have been supporting the development of distributed systems performing decentralized thinking and reasoning, automated actions, and regulating component interactions in unpredictable and uncertain scenarios. Despite the scientific literature is plenty of innovative contributions about resource and tasks allocation, the agents still schedule their behaviors and tasks by employing traditional general-purpose scheduling algorithms. By doing so, MAS are unable to enforce the compliance with strict timing constraints. Thus, it is not possible to provide any guarantee about the system behavior in the worst-case scenario. Thereby, as they are, they cannot operate in safety-critical environments. This paper analyzes the agents’ local schedulers provided by the most relevant agent-based frameworks from a cyber-physical systems point of view. Moreover, it maps a set of agents’ behaviors on task models from the real-time literature. Finally, a practical case-study is provided to highlight how such “MAS reliability” can be achieved.

Keywords

Multi-Agent Systems Cyber-Physical Systems Real-time systems Scheduling algorithms Real-time MAS 

References

  1. 1.
    Calvaresi, D., Cesarini, D., Sernani, P., Marinoni, M., Dragoni, A.F., Sturm, A.: Exploring the ambient assisted living domain: a systematic review. J. Ambient Intell. Humanized Comput. 8(2), 239–257 (2017)CrossRefGoogle Scholar
  2. 2.
    Calvaresi, D., Claudi, A., Dragoni, A.F., Yu, E., Accattoli, D., Sernani, D.: A goal-oriented requirements engineering approach for the ambient assisted living domain. In Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments, PETRA 2014, pp. 20:1–20:4 (2014)Google Scholar
  3. 3.
    Calvaresi, D., Schumacher, M., Marinoni, M., Hilfiker, R., Dragoni, A.F., Buttazzo, G.: Agent-based systems for telerehabilitation: strengths, limitations and future challenges. In: Proceedings of X Workshop on Agents Applied in Health Care (2017)CrossRefGoogle Scholar
  4. 4.
    Hsieh, F.-S.: Modeling and control of holonic manufacturing systems based on extended contract net protocol. In: Proceedings of the 2002 American Control Conference, vol. 6, pp. 5037–5042. IEEE (2002)Google Scholar
  5. 5.
    Paolanti, M., Liciotti, D., Pietrini, R., Mancini, A., Frontoni, E.: Modelling and forecasting customer navigation in intelligent retail environments. J. Intell. Robot. Syst. Theory Appl. 91(2), 165–180 (2018). www.scopus.comCrossRefGoogle Scholar
  6. 6.
    Biondi, A., Di Natale, M., Buttazzo, G.: Response-time analysis for real-time tasks in engine control applications. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 120–129. ACM (2015)Google Scholar
  7. 7.
    Buttazzo, G.: Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications, vol. 24. Springer Science & Business Media, Berlin (2011)Google Scholar
  8. 8.
    Calvaresi, D., Marinoni, M., Sturm, A., Schumacher, M., Buttazzo, G.: The challenge of real-time multi-agent systems for enabling iot and cps. In: Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence (WI 2017), August 2017Google Scholar
  9. 9.
    Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10(2), 115–152 (1995)CrossRefGoogle Scholar
  10. 10.
    Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE, vol. 7. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  11. 11.
    Calvaresi, D., et al.: A framework based on real-time os and multi-agents for intelligent autonomous robot competitions. In: 2016 11th IEEE Symposium on Industrial Embedded Systems (SIES), pp. 1–10, May 2016Google Scholar
  12. 12.
    Rajkumar, R.R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next computing revolution. In: Proceedings of the 47th Design Automation Conference, pp. 731–736. ACM (2010)Google Scholar
  13. 13.
    Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul. 18(1), 11 (2015)CrossRefGoogle Scholar
  14. 14.
    Leon, M.G.F., Paprzycki, M.: A review of agent platforms. Technical report, ICT COST Action IC1404, Multi-Paradigm Modelling for Cyber-Physical Systems (MPM4CPS) (2015)Google Scholar
  15. 15.
    Chen, S., Tang, A., Stephens, P., Hsing-bung (HB) Chen: Simulation of multi-agent based scheduling algorithms for waiting-line queuing problems. Challenge, New Mexico Supercomputing (2012)Google Scholar
  16. 16.
    Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K.: Mason: a new multi-agent simulation toolkit. In: Proceedings of the 2004 Swarmfest Workshop, pp. 316–327. Department of Computer Science and Center for Social Complexity, George Mason University Fairfax, VA (2004)Google Scholar
  17. 17.
    Bordini, R.H., Hübner, J.F.: BDI agent programming in agentspeak using Jason. In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 143–164. Springer, Heidelberg (2006).  https://doi.org/10.1007/11750734_9CrossRefzbMATHGoogle Scholar
  18. 18.
    Yaashuwanth, C., Ramesh, R.: Intelligent time slice for round robin in real time operating systems. IJRRAS 2(2), 126–131 (2010)zbMATHGoogle Scholar
  19. 19.
    JADE - Programmer Manual. http://jade.tilab.com/doc/programmersguide.pdf. Accessed 24 Sep 2017
  20. 20.
    Braubach, L., Lamersdorf, W., Pokahr, A.: Implementing a bdi-infrastructure for jade agents, Jadex (2003)Google Scholar
  21. 21.
    Altmeyer, S., Manikandan Sundharam, S., Navet, N.: The case for fifo real-time scheduling. Technical report, University of Luxembourg (2016)Google Scholar
  22. 22.
    MASON - Manual. https://cs.gmu.edu/~eclab/projects/mason/manual.pdf. Accessed 24 Sep 2017
  23. 23.
    Saifullah, A., Li, J., Agrawal, K., Lu, C., Gill, C.: Multi-core real-time scheduling for generalized parallel task models. Real-Time Syst. 49(4), 404–435 (2013)CrossRefGoogle Scholar
  24. 24.
    Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM (JACM) 20(1), 46–61 (1973)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Biondi, A., Melani, A., Bertogna, M.: Hard constant bandwidth server: comprehensive formulation and critical scenarios. In: Proceedings of the 9th IEEE International Symposium on Industrial Embedded Systems, pp. 29–37, June 2014Google Scholar
  26. 26.
    Horn, W.A.: Some simple scheduling algorithms. Naval Res. Logist. (NRL) 21(1), 177–185 (1974)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Dertouzos, M.L.: Control robotics: the procedural control of physical processes. In: Proceedings IFIP Congress (1974)Google Scholar
  28. 28.
    Foundation for Intelligent Physical Agents Standard. http://www.fipa.org/. Accessed 24 Sep 2017
  29. 29.
    Alechina, N., Logan, B., Nguyen, H.N., Rakib, A.: Verifying time, memory and communication bounds in systems of reasoning agents. Synthese 169(2), 385–403 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Davide Calvaresi
    • 1
    • 2
  • Mauro Marinoni
    • 1
  • Luca Lustrissimini
    • 3
  • Kevin Appoggetti
    • 3
  • Paolo Sernani
    • 3
  • Aldo F. Dragoni
    • 3
  • Michael Schumacher
    • 2
  • Giorgio Buttazzo
    • 1
  1. 1.Scuola Superiore Sant’AnnaPisaItaly
  2. 2.University of Applied Sciences Western SwitzerlandSierreSwitzerland
  3. 3.Università Politecnica delle MarcheAnconaItaly

Personalised recommendations