Advertisement

Agent-Based Security Constrained Optimal Power Flow with Primary Frequency Control

  • Maxime Velay
  • Meritxell Vinyals
  • Yvon Bésanger
  • Nicolas Retière
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10767)

Abstract

We propose in this paper a distributed method to solve the security constrained optimal power flow problem (SCOPF) that considers not only contingencies on transmission lines but also on generators. With this aim, we extend the formulation of the SCOPF problem to consider the primary frequency response of generators as well as the short term constraints of generators and transmission lines. Then, we distribute the problem among different agents and we use a decentralized decision making algorithm, based on the Alternating Direction Method of Multipliers (ADMM), to optimize the grid power supply while being resilient to violations that would occur during contingencies. Finally, we validate the effectiveness of our approach on a simple test system.

Keywords

Distributed optimization Multi-agent system Security-constrained optimal power flow Primary frequency control 

Notes

Acknowledgments

Meritxell Vinyals would like to acknowledge the support of the European Union under the FP7 Grant Agreement no. 619682 (MAS2TERING project) and under the H2020 Grant Agreement no. 774431 (DRIVE project).

References

  1. 1.
    Bornard, P., Pavard, M.: Réseaux d’interconnexion et de transport: réglages et stabilité. Technival report, Téchniques de l’ingénieur (1993). http://www.techniques-ingenieur.fr/base-documentaire/energies-th4/reseaux-electriques-de-transport-et-de-repartition-42263210/reseaux-d-interconnexion-et-de-transport-reglages-et-stabilite-d4092/
  2. 2.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011).  https://doi.org/10.1561/2200000016CrossRefzbMATHGoogle Scholar
  3. 3.
    Capitanescu, F., et al.: State-of-the-art, challenges, and future trends in security constrained optimal power flow. Electr. Power Syst. Res. 81(8), 1731–1741 (2011)CrossRefGoogle Scholar
  4. 4.
    Chakrabarti, S., Kraning, M., Chu, E., Baldick, R., Boyd, S.: Security Constrained Optimal Power Flow via proximal message passing. In: 2014 Clemson University Power Systems Conference, pp. 1–8 (2014).  https://doi.org/10.1109/PSC.2014.6808131. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6808131
  5. 5.
    Elsayed, W.T., El-Saadany, E.F.: A fully decentralized approach for solving the economic dispatch problem. IEEE Trans. Power Syst. 30(4), 2179–2189 (2015).  https://doi.org/10.1109/TPWRS.2014.2360369CrossRefGoogle Scholar
  6. 6.
    Karoui, K., Crisciu, H., Platbrood, L.: Modeling the primary reserve allocation in preventive and curative security constrained OPF. In: 2010 IEEE PES Transmission and Distribution Conference and Exposition, pp. 1–6. IEEE (2010)Google Scholar
  7. 7.
    Kraning, M., Chu, E., Lavaei, J., Boyd, S.P.: Dynamic network energy management via proximal message passing. Found. Trends Optim. 1(2), 73–126 (2014)CrossRefGoogle Scholar
  8. 8.
    Monticelli, A., Pereira, M.V.F., Granville, S.: Security-constrained optimal power flow with post-contigency corrective rescheduling. IEEE Trans. Power Syst. 2(1), 175–180 (1987)CrossRefGoogle Scholar
  9. 9.
    Phan, D.T., Sun, X.A.: Minimal impact corrective actions in security-constrained optimal power flow via sparsity regularization. IEEE Trans. Power Syst. 30(4), 1947–1956 (2015)CrossRefGoogle Scholar
  10. 10.
    Pinar, A., Meza, J., Donde, V., Lesieutre, B.: Optimization strategies for the vulnerability analysis of the electric power grid. SIAM J. Optim. 20(4), 1786–1810 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Scott, P., Thiébaux, S.: Distributed multi-period optimal power flow for demand response in microgrids. In: Proceedings of the 2015 ACM Sixth International Conference on Future Energy Systems, e-Energy 2015, Bangalore, India, 14–17 July 2015, pp. 17–26 (2015)Google Scholar
  12. 12.
    Wang, Y., Wang, S., Wu, L.: Distributed optimization approaches for emerging power systems operation: a review. Electr. Power Syst. Res. 144, 127–135 (2017). http://dx.doi.org/10.1016/j.epsr.2016.11.025CrossRefGoogle Scholar
  13. 13.
    Zhang, Z., Chow, M.Y.: Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid. IEEE Trans. Power Syst. 27, 1761–1768 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maxime Velay
    • 1
    • 2
  • Meritxell Vinyals
    • 1
  • Yvon Bésanger
    • 2
  • Nicolas Retière
    • 2
  1. 1.CEA, LIST, Laboratoire d’Analyse des Données et d’Intelligence des SystèmesGif-sur-YvetteFrance
  2. 2.Univ. Grenoble Alpes, CNRS, Grenoble INP, Institute of Engineering Univ. Grenoble Alpes, G2ElabGrenobleFrance

Personalised recommendations