Active Situation Reporting: Definition and Analysis

  • Jennifer RenouxEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10767)


In a lot of situations a human is incapable to observe their environment properly. This can be due to disabilities, extreme conditions or simply a complex and changing environment. In those cases, help from an artificial system can be beneficial. This system, equipped with appropriate sensors, would be capable of perceiving things that a human cannot and inform them about the current state of the situation. In this short position paper, we introduce the notion of Active Situation Reporting, in which an agent can inform another agent about the evolution of a situation. We define this notion, study the challenges such a system raises and identify the open research questions by reviewing the state of the art.


Short Position Paper Important Open Research Questions Semantic Perception Explainer Agent Wide Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been funded by the MoveCare project (ID 732158), which is funded by the European Commission under the H2020 framework program for research and innovation.


  1. 1.
    Alirezaie, et al.: An ontology-based context-aware system for smart homes: E-care@ home. Sensors 17(7), 1586 (2017)CrossRefGoogle Scholar
  2. 2.
    Bajcsy, R.: Active perception. Proc. IEEE 76(8), 966–1005 (1988)CrossRefGoogle Scholar
  3. 3.
    Banaee, H., Loutfi, A.: Data-driven rule mining and representation of temporal patterns in physiological sensor data. IEEE J. Biomed. Health Inform. 19(5), 1557–1566 (2015)CrossRefGoogle Scholar
  4. 4.
    Beeson, P., Kortenkamp, D., Bonasso, R.P., Persson, A., Loutfi, A., Bona, J.P.: An ontology-based symbol grounding system for human-robot interaction. In: Proceedings of the 2014 AAAI Fall Symposium Series, Arlington, pp. 13–15 (2014)Google Scholar
  5. 5.
    Benezeth, Y., Jodoin, P.M., Emile, B., Laurent, H., Rosenberger, C.: Comparative study of background subtraction algorithms. J. Electron. Imaging 19(3), 033003–033003 (2010)CrossRefGoogle Scholar
  6. 6.
    Bouayad-Agha, N., Casamayor, G., Wanner, L.: Natural language generation in the context of the semantic web. Semant. Web 5(6), 493–513 (2014)Google Scholar
  7. 7.
    Compton, M., et al.: The SSN ontology of the W3C semantic sensor network incubator group. Web Semant. Sci. Serv. Agents World Wide Web 17, 25–32 (2012)CrossRefGoogle Scholar
  8. 8.
    Coradeschi, S., Loutfi, A., Wrede, B.: A short review of symbol grounding in robotic and intelligent systems. KI - Künstliche Intelligenz 27(2), 129–136 (2013)CrossRefGoogle Scholar
  9. 9.
    Coradeschi, S., Saffiotti, A.: An introduction to the anchoring problem. Robot. Auton. Syst. 43(2–3), 85–96 (2003)CrossRefGoogle Scholar
  10. 10.
    Croft, B., Lafferty, J.: Language Modeling for Information Retrieval, vol. 13. Springer, Dordrecht (2013). Scholar
  11. 11.
    Desobry, F., Davy, M., Doncarli, C.: An online kernel change detection algorithm. Trans. Signal Process. 53(8), 2961–2974 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Devin, S., Alami, R.: An implemented theory of mind to improve human-robot shared plans execution. In: The Eleventh ACM/IEEE International Conference on Human Robot Interaction, HRI 2016, pp. 319–326. IEEE Press, Piscataway (2016)Google Scholar
  13. 13.
    Faivishevsky, L.: Information theoretic multivariate change detection for multisensory information processing in Internet of Things. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6250–6254. IEEE, March 2016.
  14. 14.
    Floridi, L.: Understanding epistemic relevance. Erkenntnis 69(1), 69–92 (2008)CrossRefGoogle Scholar
  15. 15.
    Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)CrossRefGoogle Scholar
  16. 16.
    Glazer, A., Lindenbaoum, M., Markovitch, S.: Learning high-density regions for a generalized Kolmogorov-Smirnov test in high-dimensional data. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, pp. 728–736. Curran Associates Inc., USA (2012).
  17. 17.
    Han, B., Davis, L.S.: Density-based multifeature background subtraction with support vector machine. IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 1017–1023 (2012)CrossRefGoogle Scholar
  18. 18.
    Henson, C., Thirunarayan, K., Sheth, A.: An ontological approach to focusing attention and enhancing machine perception on the web. Appl. Ontol. 6(4), 345–376 (2011)Google Scholar
  19. 19.
    Langley, P.: Explainable agency in human-robot interaction. In: AAAI Fall Symposium Series (2016)Google Scholar
  20. 20.
    Liu, A., Zhang, G., Lu, J., Lu, N., Lin, C.-T.: An online competence-based concept drift detection algorithm. In: Kang, B.H., Bai, Q. (eds.) AI 2016. LNCS (LNAI), vol. 9992, pp. 416–428. Springer, Cham (2016). Scholar
  21. 21.
    Lyons, J.B.: Being transparent about transparency: a model for human-robot interaction. In: AAAI Spring Symposium Series (2013)Google Scholar
  22. 22.
    Milliez, G., Warnier, M., Clodic, A., Alami, R.: A framework for endowing an interactive robot with reasoning capabilities about perspective-taking and belief management. In: 2014 RO-MAN: The 23rd IEEE International Symposium on Robot and Human Interactive Communication, pp. 1103–1109. IEEE (2014)Google Scholar
  23. 23.
    Nevatia, R.: Machine perception, p. 209. Prentice-Hall Inc., Englewood Cliffs (1982). 07632Google Scholar
  24. 24.
    Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge University Press, New York (2000)CrossRefGoogle Scholar
  25. 25.
    Renoux, J.: Contribution to multiagent planning for active information gathering. Ph.D. thesis, Normandie Université (2015)Google Scholar
  26. 26.
    Renoux, J., Mouaddib, A.-I., LeGloannec, S.: Distributed decision-theoretic active perception for multi-robot active information gathering. In: Torra, V., Narukawa, Y., Endo, Y. (eds.) MDAI 2014. LNCS (LNAI), vol. 8825, pp. 60–71. Springer, Cham (2014). Scholar
  27. 27.
    Rijsbergen, C.J.V.: Information Retrieval, 2nd edn. Butterworth-Heinemann, Newton (1979)zbMATHGoogle Scholar
  28. 28.
    Roussel, S., Cholvy, L.: Cooperative interpersonal communication and relevant information. In: ESSLLI Workshop on Logical Methods for Social Concepts, Bordeaux. Citeseer (2009)Google Scholar
  29. 29.
    Saracevic, T.: Why is relevance still the basic notion in information science. In: Re: inventing Information Science in the Networked Society. Proceedings of the 14th International Symposium on Information Science (ISI 2015), pp. 26–35 (2015)Google Scholar
  30. 30.
    Sheth, A., Henson, C., Sahoo, S.S.: Semantic sensor web. IEEE Internet Comput. 12(4), 78–83 (2008)CrossRefGoogle Scholar
  31. 31.
    Spaan, M.T.J., Veiga, T.S., Lima, P.U.: Decision-theoretic planning under uncertainty with information rewards for active cooperative perception. Auton. Agents Multi-Agent Syst. 29(6), 1157–1185 (2015)CrossRefGoogle Scholar
  32. 32.
    St-Charles, P.L., Bilodeau, G.A., Bergevin, R.: Flexible background subtraction with self-balanced local sensitivity. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2014, pp. 414–419. IEEE Computer Society, Washington, DC (2014)Google Scholar
  33. 33.
    Vavrečka, M., Farkaš, I., Lhotská, L.: Bio-inspired model of spatial cognition. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7062, pp. 443–450. Springer, Heidelberg (2011). Scholar
  34. 34.
    Wang, R., Bunyak, F., Seetharaman, G., Palaniappan, K.: Static and moving object detection using flux tensor with split Gaussian models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 414–418 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Machine Perception and Interaction Lab, AASSÖrebro UniversitetÖrebroSweden

Personalised recommendations