Advertisement

Approximating Agreements in Argumentation Dialogues

  • Juan Carlos Nieves
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10767)

Abstract

In many real applications, to reach an agreement between the participants of a dialogue, which can be for instance a negotiation, is not easy. Indeed, there are application domains such as the medical domain where to have a consensus among medical professionals is not feasible and might even be regarded as counterproductive. In this paper, we introduce an approach for expressing goals of a dialogue considering ordered disjunction rules. By applying argumentation semantics and degrees of satisfaction of goals, we introduce the so-called dialogue agreement degree. Moreover, by considering sets of dialogue agreement degrees, we define a lattice of agreement degrees. We argue that a lattice of agreement degrees suggests different approximations between the current state of a dialogue and its aimed goals. Indeed, a lattice of agreement degrees can show evidence about whether or not it is acceptable to dismiss goals in order to maximize agreements regarding other goals.

Notes

Acknowledgements

The author is very grateful to the anonymous referees for their useful comments.

References

  1. 1.
    Atkinson, K., et al.: Towards artificial argumentation. AI Mag. 38(3), 25–36 (2017)CrossRefGoogle Scholar
  2. 2.
    Baral, C.: Knowledge Representation. Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  3. 3.
    Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011)CrossRefGoogle Scholar
  4. 4.
    Baumann, R., Woltran, S.: The role of self-attacking arguments in characterizations of equivalence notions. J. Logic Comput. 24(14), 1293–1313 (2014)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Black, E., Hunter, A.: An inquiry dialogue system. Auton. Agents. Multi-Agent Syst. 19(2), 173–209 (2009)CrossRefGoogle Scholar
  6. 6.
    Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brewka, G., Niemelä, I., Syrjänen, T.: Logic programs with ordered disjunction. Comput. Intell. 20(2), 335–357 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dunne, P.E.: Computational properties of argument systems satisfying graph-theoretic constraints. Artif. Intell. 171(10–15), 701–729 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fan, X., Toni, F.: A general framework for sound assumption-based argumentation dialogues. Artif. Intell. 216, 20–54 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative approach. Theory Pract. Logic Program. 4(1–2), 95–138 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. J. ACM 38(3), 620–650 (1991)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Governatori, G., Olivieri, F., Scannapieco, S., Rotolo, A., Cristani, M.: Strategic argumentation is NP-complete. In: ECAI 2014–21st European Conference on Artificial Intelligence, vol. 263 of Frontiers in Artificial Intelligence and Applications, pp. 399–404. IOS Press (2014)Google Scholar
  14. 14.
    Guerrero, E., Nieves, J.C., Lindgren, H.: Semantic-based construction of arguments: an answer set programming approach. Int. J. Approximate Reasoning 64, 54–74 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Guerrero, E., Nieves, J.C., Lindgren, H.: An activity-centric argumentation framework for assistive technology aimed at improving health. Argument Comput. 7(1), 5–33 (2016)Google Scholar
  16. 16.
    Kljakovic, M.: Clinical disagreement: a silent topic in general practice. NZ. Fam. Physician 30(5), 358–360 (2003)Google Scholar
  17. 17.
    Kraus, S., Sycara, K.P., Evenchik, A.: Reaching agreements through argumentation: a logical model and implementation. Artif. Intell. 104(1–2), 1–69 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Modgil, S., Prakken, H.: The ASPIC\({}^{\text{+ }}\) framework for structured argumentation: a tutorial. Argument Comput. 5(1), 31–62 (2014)CrossRefGoogle Scholar
  19. 19.
    Nieves, J.C.: Expansion and equivalence relations on argumentation frameworks based on logic programs. In: Criado Pacheco, N., Carrascosa, C., Osman, N., Julián Inglada, V. (eds.) EUMAS/AT -2016. LNCS (LNAI), vol. 10207, pp. 375–389. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59294-7_32CrossRefGoogle Scholar
  20. 20.
    Nieves, J.C., Lindgren, H.: Deliberative argumentation for service provision in smart environments. In: Bulling, N. (ed.) EUMAS 2014. LNCS (LNAI), vol. 8953, pp. 388–397. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-17130-2_27CrossRefGoogle Scholar
  21. 21.
    Nieves, J.C., Osorio, M., Cortés, U.: Supporting decision making in organ transplating using argumentation theory. In: LANMR 2006: 2nd Latin American Non-Monotonic Reasoning Workshop, pp. 9–14 (2006)Google Scholar
  22. 22.
    Ossowski, S.: Agreement Technologies. Springer, Dordrecht (2013).  https://doi.org/10.1007/978-94-007-5583-3CrossRefGoogle Scholar
  23. 23.
    Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some formal inter-agent dialogues. J. Logic Comput. 13(3), 347–376 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Prakken, H.: Coherence and flexibility in dialogue games for argumentation. J. Logic Comput. 15(6), 1009–1040 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Prakken, H.: Formal systems for persuasion dialogue. Knowl. Eng. Rev. 21(2), 163–188 (2006)CrossRefGoogle Scholar
  26. 26.
    Prakken, H., Sartor, G.: Argument-based extended logic programming with defeasible priorities. J. Appl. Non-Classical Logics 7(1), 25–75 (1997)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Rahwan, I., Simari, G.R. (eds.): Argumentation in Artificial Intelligence. Springer, Boston (2009).  https://doi.org/10.1007/978-0-387-98197-0CrossRefGoogle Scholar
  28. 28.
    Sierra, C., de Mantaras, R.L., Simoff, S.: The argumentative mediator. In: Criado Pacheco, N., Carrascosa, C., Osman, N., Julián Inglada, V. (eds.) EUMAS/AT -2016. LNCS (LNAI), vol. 10207, pp. 439–454. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59294-7_36CrossRefGoogle Scholar
  29. 29.
    Tolchinsky, P., Cortés, U., Nieves, J.C., López-Navidad, A., Caballero, F.: Using arguing agents to increase the human organ pool for transplantation. In: Proceedings of the Third Workshop on Agents Applied in Health Care (IJCAI 2005) (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computing ScienceUmeå UniversityUmeåSweden

Personalised recommendations