Advertisement

Towards Robots-Assisted Ambient Intelligence

  • Marin Lujak
  • Noury Bouraqadi
  • Arnaud Doniec
  • Luc Fabresse
  • Anthony Fleury
  • Abir Karami
  • Guillaume Lozenguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10767)

Abstract

An integrated network of mobile robots, personal smart devices, and smart spaces called “Robots-Assisted Ambient Intelligence” (RAmI) can provide for a more effective user assistance than if the former resources are used individually. Additionally, with the application of distributed network optimization, not only can we improve the assistance of an individual user, but we can also minimize conflict or congestion created when multiple users in large installations use the limited resources of RAmI that are spatially and temporally constrained. The emphasis of RAmI is on the efficiency and effectiveness of multiple and simultaneous user assistance and on the influence of an individual’s actions on the desired system’s performance. In this paper, we model RAmI as a multi-agent system with AmI, user, and robot agents. Moreover, we propose a modular three-layer architecture for each robot agent and discuss its application and communication requirements to facilitate efficient usage of limited RAmI resources. Our approach is showcased by means of a case study where we focus on meal and medicine delivery to patients in large hospitals.

Keywords

Service robotics Ambient intelligence Multi-robot team Patient care 

Notes

Acknowledgements

This work has been partially supported by the COMRADES project within the framework “Fonds d’amorçage Santé” by Institut Mines Telecom in France.

References

  1. 1.
    Giordani, S., Lujak, M., Martinelli, F.: A distributed algorithm for the multi-robot task allocation problem. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010. LNCS (LNAI), vol. 6096, pp. 721–730. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13022-9_72CrossRefGoogle Scholar
  2. 2.
    Grondin, G., Bouraqadi, N., Vercouter, L.: MaDcAr: an abstract model for dynamic and automatic (re-)assembling of component-based applications. In: Gorton, I., Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford, J.A., Szyperski, C., Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063, pp. 360–367. Springer, Heidelberg (2006).  https://doi.org/10.1007/11783565_28CrossRefGoogle Scholar
  3. 3.
    Kantaros, Y., Zavlanos, M.M.: Global planning for multi-robot communication networks in complex environments. IEEE Trans. Robot. 32(5), 1045–1061 (2016)CrossRefGoogle Scholar
  4. 4.
    Karami, A.B., Fleury, A., Boonaert, J., Lecoeuche, S.: User in the loop: adaptive smart homes exploiting user feedback–state of art and future directions. Information 7(2), 35 (2016).  https://doi.org/10.3390/info7020035CrossRefGoogle Scholar
  5. 5.
    Katragjini, K., Vallada, E., Ruiz, R.: Flow shop rescheduling under different types of disruption. Int. J. Prod. Res. 51(3), 780–797 (2013)CrossRefGoogle Scholar
  6. 6.
    Kehoe, B., Patil, S., Abbeel, P., Goldberg, K.: A survey of research on cloud robotics and automation. IEEE Trans. Autom. Sci. Eng. 12(2), 398–409 (2015)CrossRefGoogle Scholar
  7. 7.
    Kon, B., Lam, A., Chan, J.: Evolution of smart homes for the elderly. In: Proceedings of the 26th International Conference on World Wide Web Companion. WWW 2017 Companion, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, pp. 1095–1101 (2017).  https://doi.org/10.1145/3041021.3054928
  8. 8.
    Lozenguez, G., Adouane, L., Beynier, A., Mouaddib, A.I., Martinet, P.: Punctual versus continuous auction coordination for multi-robot and multi-task topological navigation. Auton. Robot. 40(4), 599–613 (2016).  https://doi.org/10.1007/s10514-015-9483-7CrossRefGoogle Scholar
  9. 9.
    Lujak, M., Billhardt, H., Ossowski, S.: Distributed coordination of emergency medical service for angioplasty patients. Ann. Math. Artif. Intell. 78(1), 73–100 (2016).  https://doi.org/10.1007/s10472-016-9507-9MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lujak, M., Fernandez, A.: ORCAS: optimized robots configuration and scheduling system. In: Proceedings of the 30th ACM Symposium on Applied Computing, vol. 1, pp. 327–330 (2015).  https://doi.org/10.1145/2695664.2696024
  11. 11.
    Lujak, M., Giordani, S.: On the communication range in auction-based multi-agent target assignment. In: Bettstetter, C., Gershenson, C. (eds.) IWSOS 2011. LNCS, vol. 6557, pp. 32–43. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19167-1_4CrossRefGoogle Scholar
  12. 12.
    Lujak, M., Giordani, S., Ossowski, S.: Value of incomplete information in mobile target allocation. In: Klügl, F., Ossowski, S. (eds.) MATES 2011. LNCS (LNAI), vol. 6973, pp. 89–100. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24603-6_10CrossRefGoogle Scholar
  13. 13.
    Lujak, M., Giordani, S., Ossowski, S.: Route guidance: bridging system and user optimization in traffic assignment. Neurocomputing 151(1), 449–460 (2015).  https://doi.org/10.1016/j.neucom.2014.08.071CrossRefGoogle Scholar
  14. 14.
    Papadakis, P., Rives, P.: Binding human spatial interactions with mapping for enhanced mobility in dynamic environments. Auton. Robot. 41(5), 1047–1059 (2017).  https://doi.org/10.1007/s10514-016-9581-1CrossRefGoogle Scholar
  15. 15.
    Petitti, A., et al.: A network of stationary sensors and mobile robots for distributed ambient intelligence. IEEE Intell. Syst. 31(6), 28–34 (2016)CrossRefGoogle Scholar
  16. 16.
    Rashidi, P., Cook, D.J.: Keeping the resident in the loop: adapting the smart home to the user. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(5), 949–959 (2009)CrossRefGoogle Scholar
  17. 17.
    Rodic, A., Katie, D., Mester, G.: Ambient intelligent robot-sensor networks for environmental surveillance and remote sensing. In: 2009 7th International Symposium on Intelligent Systems and Informatics, pp. 39–44, September 2009Google Scholar
  18. 18.
    Sabattini, L., Chopra, N., Secchi, C.: Decentralized connectivity maintenance for cooperative control of mobile robotic systems. Int. J. of Robot. Res. 32(12), 1411–1423 (2013)CrossRefGoogle Scholar
  19. 19.
    Sakaguchi, T., Ujiie, T., Tsunoo, S., Yokoi, K., Wada, K.: Intelligent ambience-robot cooperation - door-closing tasks with various robots. In: 2009 IEEE Workshop on Robotic Intelligence in Informationally Structured Space, pp. 60–65, March 2009Google Scholar
  20. 20.
    Tesone, P., Polito, G., Fabresse, L., Bouraqadi, N., Ducasse, S.: Instance migration in dynamic software update. In: Proceedings of International Workshop on Meta-Programming Techniques and Reflection (META 2016) (2016). http://car.mines-douai.fr/luc/files/pdfs/2016-Tesone-META.pdf

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.IMT Lille DouaiDouaiFrance
  2. 2.University of Lyon 2, LIRISLyonFrance

Personalised recommendations