Advertisement

Combining Self-Organisation with Decision-Making and Planning

  • Christopher-Eyk Hrabia
  • Tanja Katharina Kaiser
  • Sahin Albayrak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10767)

Abstract

Coordination of mobile multi-robot systems in a self-organised manner is in the first place beneficial for simple robots in common swarm robotics scenarios. Moreover, sophisticated robot systems as for instance in disaster rescue teams, service robotics and robot soccer can also benefit from a decentralised coordination while performing complex tasks. In order to facilitate self-organised sophisticated multi-robot applications a suitable approach is to combine individual decision-making and planning with self-organization. We introduce a framework for the implementation and application of self-organization mechanisms in multi-robot scenarios. Furthermore, the integration into the hybrid behaviour planning framework ROS Hybrid Behaviour Planner is presented. This combined approach allows for a goal-directed application of self-organisation and provides a foundation for an automated selection of suitable mechanisms.

Keywords

Self-organization Behaviour-based planning Behaviour networks Hybrid planning Decision-making Multi-robot systems 

References

  1. 1.
    Balch, T., Hybinette, M.: Social potentials for scalable multi-robot formations. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2000, vol. 1, pp. 73–80. IEEE (2000)Google Scholar
  2. 2.
    Bohren, J., Cousins, S.: The SMACH high-level executive [ROS news]. IEEE Robot. Autom. Mag. 17(4), 18–20 (2010)CrossRefGoogle Scholar
  3. 3.
    Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)CrossRefGoogle Scholar
  4. 4.
    Colledanchise, M., Ögren, P.: How behavior trees modularize hybrid control systems and generalize sequential behavior compositions, the subsumption architecture, and decision trees. IEEE Trans. Robot. 33(2), 372–389 (2017)CrossRefGoogle Scholar
  5. 5.
    De Wolf, T., Holvoet, T.: Emergence versus self-organisation: different concepts but promising when combined. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) ESOA 2004. LNCS (LNAI), vol. 3464, pp. 1–15. Springer, Heidelberg (2005).  https://doi.org/10.1007/11494676_1CrossRefGoogle Scholar
  6. 6.
    Deneubourg, J.-L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing exploratory pattern of the argentine ant. J. Insect Behav. 3(2), 159–168 (1990)CrossRefGoogle Scholar
  7. 7.
    Dorigo, M., et al.: Evolving self-organizing behaviors for a swarm-bot. Auton. Robot. 17(2–3), 223–245 (2004)CrossRefGoogle Scholar
  8. 8.
    Edmonds, B.: Using the experimental method to produce reliable self-organised systems. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) ESOA 2004. LNCS (LNAI), vol. 3464, pp. 84–99. Springer, Heidelberg (2005).  https://doi.org/10.1007/11494676_6CrossRefGoogle Scholar
  9. 9.
    Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Montagna, S., Viroli, M., Arcos, J.L., Arcos, J.L.: Description and composition of bio-inspired design patterns: a complete overview. Natural Comput. 12(1), 43–67 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S.: BIO-CORE: bio-inspired self-organising mechanisms core. In: Hart, E., Timmis, J., Mitchell, P., Nakamo, T., Dabiri, F. (eds.) BIONETICS 2011. LNICST, vol. 103, pp. 59–72. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32711-7_5CrossRefGoogle Scholar
  11. 11.
    Foote, T.: tf: the transform library. In: 2013 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), Open-Source Software Workshop, pp. 1–6, April 2013Google Scholar
  12. 12.
    Fox, M., Long, D.: PDDL2.1: an Extension to PDDL for expressing temporal planning domains. J. Artif. Int. Res. 20(1), 61–124 (2003)CrossRefGoogle Scholar
  13. 13.
    Francesca, G., et al.: AutoMoDe-Chocolate: automatic design of control software for robot swarms. Swarm Intell. 9(2–3), 125–152 (2015)CrossRefGoogle Scholar
  14. 14.
    Ge, S.S., Cui, Y.J.: New potential functions for mobile robot path planning. In: Proceedings of the 14th IFAC World Congres, pp. 509–514 (1999)Google Scholar
  15. 15.
    Graff, D., Richling, J., Werner, M.: jSwarm: distributed coordination in robot swarms. In: Robotic Sensor Networks (RSN) (2014)Google Scholar
  16. 16.
    Hrabia, C.-E., Wypler, S., Albayrak, S.: Towards goal-driven behaviour control of multi-robot systems. In: 2017 3nd International Conference on Control, Automation and Robotics (ICCAR), pp. 166–173, April 2017Google Scholar
  17. 17.
    Kazadi, S.T.: Swarm engineering. phd, California Institute of Technology (2000)Google Scholar
  18. 18.
    Mamei, M., Vasirani, M., Zambonelli, F.: Experiments of morphogenesis in swarms of simple mobile robots. Appl. Artif. Intell. 18, 903–919 (2004)CrossRefGoogle Scholar
  19. 19.
    Matarić, M.J.: Issues and approaches in the design of collective autonomous agents. Robot. Auton. Syst. 16(2–4), 321–331 (1995)CrossRefGoogle Scholar
  20. 20.
    Nau, D.S., et al.: Shop2: an HTN planning system. J. Artif. Intell. Res. 20, 379–404 (2003)CrossRefGoogle Scholar
  21. 21.
    Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control. 51(3), 401–420 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pinciroli, C., Beltrame, G.: Buzz: an extensible programming language for heterogeneous swarm robotics. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3794–3800. IEEE (2016)Google Scholar
  23. 23.
    Reynolds, C.W.: Steering behaviors for autonomous characters. In: Game Developers Conference 1999, pp. 763–782 (1999)Google Scholar
  24. 24.
    Serugendo, G.D.M., Gleizes, M.P., Karageorgos, A.: Self-organisation and emergence in MAS: an overview. Informatica (Slovenia) 30(1), 45–54 (2006)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Christopher-Eyk Hrabia
    • 1
  • Tanja Katharina Kaiser
    • 1
  • Sahin Albayrak
    • 1
  1. 1.Technische Universität Berlin, DAI-LabBerlinGermany

Personalised recommendations