Advertisement

On Decentralized Implicit Negotiation in Modified Ultimatum Game

  • Jitka Homolová
  • Eliška Zugarová
  • Miroslav Kárný
  • Tatiana Valentine Guy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10767)

Abstract

Cooperation and negotiation are important elements of human interaction within extensive, flatly organized, mixed human-machine societies. Any sophisticated artificial intelligence cannot be complete without them. Multi-agent system with dynamic locally independent agents, that interact in a distributed way is inevitable in majority of modern applications. Here we consider a modified Ultimatum game (UG) for studying negotiation and cooperation aspects of decision making. The manuscript proposes agent’s optimizing policy using Markov decision process (MDP) framework, which covers implicit negotiation (in contrast with explicit schemes as in [5]). The proposed solution replaces the classical game-theoretical design of agents’ policies by an adaptive MDP that is: (i) more realistic with respect to the knowledge available to individual players; (ii) provides a first step towards solving negotiation essential in conflict situations.

Keywords

Cooperation Negotiation Economic game Ultimatum game Markov decision process 

Notes

Acknowledgement

The research has been supported by the project GA16-09848S, LTC 18075 and EU-Cost Action 16228.

References

  1. 1.
    Avanesyan, G., Kárný, M., Knejflová, Z., Guy, T.V.: Demo: What lies beneath players’ non-rationality in ultimatum game? In: Preprints of the 3rd International Workshop on Scalable Decision Making held in conjunction with ECML-PKDD 2013. ÚTIA AVČR, Prague, Czech Republic (2013)Google Scholar
  2. 2.
    Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)zbMATHGoogle Scholar
  3. 3.
    Fehr, E., Fischbacher, U., Gächter, S.: Strong reciprocity, human cooperation, and the enforcement of social norms. Hum. Nat. 13, 1–25 (2002)CrossRefGoogle Scholar
  4. 4.
    Fehr, E., Schmidt, K.: A theory of fairness, competition, and cooperation. Q. J. Econ. 114(3), 817–868 (1999)CrossRefGoogle Scholar
  5. 5.
    Goranko, V., Turrini, P.: Non-cooperative games with preplay negotiations. CoRR abs/1208.1718 (2012)Google Scholar
  6. 6.
    Güth, W., Schmittberger, R., Schwarze, B.: An experimental analysis of ultimatum bargaining. J. Econ. Behav. Organ. 3(4), 367–388 (1982)CrossRefGoogle Scholar
  7. 7.
    Guy, T.V., Kárný, M., Lintas, A., Villa, A.: Theoretical Models of Decision-making in the Ultimatum Game: Fairness vs. Reason, pp. 185–191. Springer, Singapore (2016).  https://doi.org/10.1007/978-981-10-0207-6_26CrossRefGoogle Scholar
  8. 8.
    Harsanyi, J.: Games with incomplete information played by Bayesian players I-III. Manag. Sci. 50(12 Supplement), 1818–1824 (2004)Google Scholar
  9. 9.
    Haselhuhn, M.P., Mellers, B.A.: Emotions and cooperation in economic games. Cogn. Brain Res. 23, 24–33 (2005)CrossRefGoogle Scholar
  10. 10.
    Hůla, F., Ruman, M., Kárný, M.: Adaptive proposer for ultimatum game. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 330–338. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44778-0_39CrossRefGoogle Scholar
  11. 11.
    Johansson, B., Speranzon, A., Johansson, M., Johansson, K.H.: On decentralized negotiation of optimal consensus. Automatica 44(4), 1175–1179 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kraus, S.: Negotiation and cooperation in multi-agent environments. Artif. Intell. 94(1–2), 79–97 (1997)CrossRefGoogle Scholar
  13. 13.
    Nash, J.F.: The bargaining problem. Econometrica 18(2), 155–162 (1950)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)CrossRefGoogle Scholar
  15. 15.
    Peterka, V.: Bayesian approach to system identification. In: Eykhoff, P. (ed.) In Trends and Progress in System Identification, pp. 239–304. Pergamon Press, Netherlands (1981)CrossRefGoogle Scholar
  16. 16.
    Powell, W.B.: Approximate Dynamic Programming, 2nd edn. Wiley, Hoboken (2011)CrossRefGoogle Scholar
  17. 17.
    Puterman, M.L.: Markov Decission Processes. Wiley, Hoboken (1994)CrossRefGoogle Scholar
  18. 18.
    Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50(1), 97–109 (1982)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sanfey, A.G.: Social decision-making: insights from game theory and neuroscience. Science 318, 598–602 (2007)CrossRefGoogle Scholar
  20. 20.
    Semsar-Kazerooni, E., Khorasani, K.: Multi-agent team cooperation: a game theory approach. Automatica 45(10), 2205–2213 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Xuan, P., Lesser, V., Zilberstein, S.: Communication decisions in multiagent cooperation: model and experiments. In: Proceedings of the Fifth International Conference on Autonomous Agents, Montreal, Canada, pp. 616–623 (2001). http://rbr.cs.umass.edu/shlomo/papers/XLZagents01.html

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jitka Homolová
    • 1
  • Eliška Zugarová
    • 1
  • Miroslav Kárný
    • 1
  • Tatiana Valentine Guy
    • 1
  1. 1.Department of Adaptive SystemsThe Czech Academy of Sciences, Institute of Information Theory and AutomationPrague 8Czech Republic

Personalised recommendations