Advertisement

Decidable Term-Modal Logics

  • Eugenio Orlandelli
  • Giovanna Corsi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10767)

Abstract

The paper considers term-modal logics and introduces some decidable fragments thereof. In particular, two fragments will be introduced: one that simulates monotone non-normal logics and another one that simulates normal multi-agent epistemic logics with quantification over groups of agents. These logics are defined semantically. Then, each of them is proof-theoretically characterized by a labelled calculus with good structural properties. Finally, we prove that each fragment considered is decidable, and we characterize the complexity of the validity problem for some of them.

Keywords

Term-modal logics Monotone modalities Multi-agent epistemic logics Decidability Sequent calculi 

References

  1. 1.
    Ågotnes, T., Alechina, N.: Epistemic coalition logic: completeness and complexity. In: Proceedings of AAMAS 2012, 1099–1106 (2012)Google Scholar
  2. 2.
    Belardinelli, F., Lomuscio, A.: Quantified epistemic logic for reasoning about knowledge in multi-agent systems. Artif. Intell. 173, 982–1013 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Braüner, T., Ghilardi, S.: First-order modal logic. In: Blackburn, P., et al. (eds.) Handbook of Modal Logic, pp. 549–620. Elsevier, Amsterdam (2007)Google Scholar
  4. 4.
    Calardo, E., Rotolo, A.: Variants of multi-relational semantics for propositional non-normal modal logics. J. Appl. Non-Class. Log. 24, 293–320 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Corsi, G., Orlandelli, E.: Free quantified epistemic logics. Stud. Log. 101, 1159–1183 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Corsi, G., Orlandelli, E.: Sequent calculi for free quantified epistemic logics. In: Proceedings of ARQNL 2016, pp. 21–35. CEUR-WS (2016)Google Scholar
  7. 7.
    Corsi, G., Tassi, G.: A new approach to epistemic logic. In: Weber, E. (ed.) Logic, Reasoning, and Rationality, pp. 27–44. Springer, Dordrecht (2014).  https://doi.org/10.1007/978-94-017-9011-6_2CrossRefGoogle Scholar
  8. 8.
    Dyckhoff, R., Negri, S.: Geometrization of first-order logic. Bull. Symb. Log. 21, 126–163 (2015)CrossRefGoogle Scholar
  9. 9.
    Fagin, R., et al.: Reasoning about Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  10. 10.
    Fitting, M., et al.: Term-modal logics. Stud. Log. 69, 133–169 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    French, T., et al.: Succinctness of epistemic languages. In: Proceedings of IJCAI 2011, pp. 881–886. AAAI Press (2011)Google Scholar
  12. 12.
    Garg, D., et al.: Countermodels from sequent calculi in multi-modal logics. In: Proceedings of LICS 2012, pp. 315–324. IEEE Press (2012)Google Scholar
  13. 13.
    Gasquet, O., Herzig, A.: From classical to normal modal logics. In: Wansing, H. (ed.) Proof Theory of Modal Logic, pp. 293–311. Kluwer, Dordrecht (1996).  https://doi.org/10.1007/978-94-017-2798-3_15CrossRefzbMATHGoogle Scholar
  14. 14.
    Gilbert, D., Maffezioli, P.: Modular sequent calculi for classical modal logics. Stud. Log. 103, 175–217 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Grove, A., Halpern, J.: Naming and identity in epistemic logics part 1: the propositional case. J. Log. Comp. 3, 345–378 (1993)CrossRefGoogle Scholar
  16. 16.
    Halpern, J., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artif. Intell. 54, 319–379 (1992)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hansen, H.: Monotone Modal Logic (M.Th.). ILLC Preprints, Amsterdam (2003)Google Scholar
  18. 18.
    Kracht, M., Wolter, F.: Normal monomodal logics can simulate all others. J. Symb. Log. 64, 99–138 (1999)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lomuscio, A., Colombetti, M.: QLB: a quantified logic for belief. In: Müller, J.P., Wooldridge, M.J., Jennings, N.R. (eds.) ATAL 1996. LNCS, vol. 1193, pp. 71–85. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0013578CrossRefGoogle Scholar
  20. 20.
    Negri, S., von Plato, J.: Proof Analysis. CUP, Cambridge (2011)CrossRefGoogle Scholar
  21. 21.
    Padmanabha, A., Ramanujam, R.: The monodic fragment of propositional term modal logic. Stud. Log. 1–25 (2018). Online FirstGoogle Scholar
  22. 22.
    Parikh, R.: The logic of games and its applications. In: Karpinski, M., van Leeuwen, J. (eds.) Topics in the Theory of Computation, pp. 119–139. Elsevier, Amsterdam (1985)Google Scholar
  23. 23.
    Pauly, M.: A modal logic for coalitional power in games. J. Log. Comput. 12, 149–166 (2002)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sedlar, I.: Term-modal logic of evidence (2016). Unpublished paperGoogle Scholar
  25. 25.
    Vardi, M.: On the complexity of epistemic reasoning. In: Proceedings of LICS 1989, pp. 243–252. IEEE Press (1989)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Philosophy and Communication StudiesUniversity of BolognaBolognaItaly

Personalised recommendations