Improved Quantum Key Distribution Networks Based on Blom-Scheme

  • Ya-Qi Song
  • Li Yang
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 255)


With the mature implement of point-to-point quantum key distribution (QKD) system, QKD networks become the focal points of the research. In general, QKD network is a simple extension of point-to-point QKD systems. An N-user QKD network is constructed with \(O(N^2)\) point-to-point QKD systems, which consumes a great deal of resources. We first propose an improved QKD network based on Blom-scheme, which reduces the number of point-to-point QKD systems from \(O(N^2)\) to O(N) and maintains unconditional secure. Then we develop it to a multiple-centre network. Moreover, as denial-of-service is a normal and effective attack on quantum communication system, we creatively construct a network architecture based on block design against the attack. Our network architecture can reduce the cost of the quantum channels greatly and improve the survivability compared to the existing QKD networks.


Quantum key distribution Key distribution network Unconditional secure Denial-of-service Block design 



This work was supported by National Natural Science Foundation of China (Grant No. 61672517), National Cryptography Development Fund (Grant No. MMJJ20170108) and the Fundamental theory and cutting edge technology Research Program of Institute of Information Engineering, CAS (Grant No. Y7Z0301 103).


  1. 1.
    Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated key exchanges. Des. Codes Cryptogr. 2, 107–125 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Mayers, D.: Quantum key distribution and string oblivious transfer in noisy channels. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 343–357. Springer, Heidelberg (1996). Scholar
  3. 3.
    Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)CrossRefGoogle Scholar
  4. 4.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)CrossRefGoogle Scholar
  5. 5.
    Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6, 1–127 (2008)CrossRefGoogle Scholar
  6. 6.
    Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppenheim, J.: The universal composable security of quantum key distribution. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 386–406. Springer, Heidelberg (2005). Scholar
  7. 7.
    Renner, R., König, R.: Universally composable privacy amplification against quantum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425. Springer, Heidelberg (2005). Scholar
  8. 8.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, pp. 175–179 (1984)Google Scholar
  9. 9.
    Wiesner, S.: Conjugate coding. ACM Sigact News 15, 78–88 (1983)CrossRefGoogle Scholar
  10. 10.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992)CrossRefGoogle Scholar
  14. 14.
    Townsend, P.D.: Quantum cryptography on multiuser optical fibre networks. Nature 385, 47–49 (1997)CrossRefGoogle Scholar
  15. 15.
    Elliott, C., Colvin, A., Pearson, D., Pikalo, O., Schlafer, J., Yeh, H.: Current status of the DARPA quantum network. arXiv preprint quant-ph/0503058 (2005)Google Scholar
  16. 16.
    Chen, W., et al.: Field experiment on a star type metropolitan quantum key distribution network. IEEE Photonics Technol. Lett. 21, 575–577 (2009)CrossRefGoogle Scholar
  17. 17.
    Peev, M., et al.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)CrossRefGoogle Scholar
  18. 18.
    Chen, T.Y., et al.: Metropolitan all-pass and inter-city quantum communication network. Opt. Express 18, 27217–27225 (2010)CrossRefGoogle Scholar
  19. 19.
    Sasaki, M., et al.: Field test of quantum key distribution in the tokyo QKD network. Opt. Express 19, 10387–10409 (2011)CrossRefGoogle Scholar
  20. 20.
    Wang, S., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express 22, 21739–21756 (2014)CrossRefGoogle Scholar
  21. 21.
    Blom, R.: An optimal class of symmetric key generation systems. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 335–338. Springer, Heidelberg (1985). Scholar
  22. 22.
    Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51, 1863–1869 (1995)CrossRefGoogle Scholar
  23. 23.
    Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)CrossRefGoogle Scholar
  24. 24.
    Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)CrossRefGoogle Scholar
  25. 25.
    Ma, X., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)CrossRefGoogle Scholar
  26. 26.
    Fung, C.H.F., Qi, B., Tamaki, K., Lo, H.K.: Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A 75, 032314 (2007)CrossRefGoogle Scholar
  27. 27.
    Xu, F., Qi, B., Lo, H.K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12, 113026 (2010)CrossRefGoogle Scholar
  28. 28.
    Li, H.W., et al.: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84, 062308 (2011)CrossRefGoogle Scholar
  29. 29.
    Makarov, V., Hjelme, D.R.: Faked states attack on quantum cryptosystems. J. Mod. Opt. 52, 691–705 (2005)CrossRefGoogle Scholar
  30. 30.
    Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 154 (2007)Google Scholar
  31. 31.
    Makarov, V., Skaar, J.: Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols. Quantum Inf. Comput. 8, 0622–0635 (2007)zbMATHGoogle Scholar
  32. 32.
    Zhao, Y., Fung, C.H.F., Qi, B., Chen, C., Lo, H.K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. In: 2009 APS March Meeting, pp. 4702–4705 (2009)Google Scholar
  33. 33.
    Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryptographic applications (corresp.). IEEE Trans. Inf. Theory 30, 776–780 (1984)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Long, N., Thomas, R.: Trends in denial of service attack technology. CERT Coordination Center (2001)Google Scholar
  35. 35.
    Çamtepe, S.A., Yener, B.: Combinatorial design of key distribution mechanisms for wireless sensor networks. In: Samarati, P., Ryan, P., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS, vol. 3193, pp. 293–308. Springer, Heidelberg (2004). Scholar
  36. 36.
    Stinson, D.R., Van Trung, T.: Some new results on key distribution patterns and broadcast encryption. Des. Codes Cryptogr. 14, 261–279 (1998)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Camarda, P., Fiume, O.: Collision free MAC protocols for wireless ad hoc networks based on BIBD architecture. JCM 2, 1–8 (2007)CrossRefGoogle Scholar
  38. 38.
    Yang, C.C.: Optical CDMA passive optical network using prime code with interference elimination. IEEE Photonics Technol. Lett. 19, 516–518 (2007)CrossRefGoogle Scholar
  39. 39.
    Anderson, I.: Combinatorial Designs: Construction Methods. Ellis Horwood, Chichester (1990)zbMATHGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.Data Assurance and Communication Security Research CenterChinese Academy of SciencesBeijingChina
  3. 3.School of Cyber SecurityUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations