Advertisement

Exploring Trends in Trinidad Steelband Music Through Computational Ethnomusicology

  • Elio QuintonEmail author
  • Florabelle Spielmann
  • Bob L. Sturm
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11265)

Abstract

We present an interdisciplinary case study combining traditional and computational methodologies to study Trinidad steelband music in a collection of recordings of the annual Panorama competition spanning over 50 years. In particular, the ethnomusicology literature identifies a number of trends and hypotheses about this practice of music involving tempo, tuning, and dynamic range. Some of these are difficult to address with traditional, manual methodologies. We investigate these through the computational lens of Music Information Retrieval (MIR) methods. We find that the tempo range measured on our corpus is consistent with values reported in ethnomusicological literature, and add further details about how tempo has changed for the best judged performances at Panorama. With respect to the use of dynamics, we find limited usefulness of a standardised measures of loudness on these recordings. When it comes to judging the tuning frequency of the acoustic recordings, we find what looks to be a narrowing of the range, but these might be unreliable given the diversity of recording media over the past decades.

Keywords

Ethnomusicology Computational ethnomusicology Music information retrieval Trinidad Steelband Calypso Soca Music archive 

Notes

Acknowledgements

This work is supported by AHRC Grant No. AH/N504531/1, and the French Labex Pasts in Present http://passes-present.eu/en.

References

  1. 1.
    Aho, W.: Steelband music in Trinidad and Tobago: the creation of a people’s music. Lat. Am. Music. Rev./Revista de Msica Latinoamericana 8(1), 26–58 (1987)CrossRefGoogle Scholar
  2. 2.
    Böck, S., Korzeniowski, F., Schlüter, J., Krebs, F., Widmer, G.: Madmom: a new Python audio and music signal processing library. In: Proceedings of the 24th ACM International Conference on Multimedia (2016)Google Scholar
  3. 3.
    Böck, S., Krebs, F., Widmer, G.: Accurate tempo estimation based on recurrent neural networks and resonating comb filters. In: Proceedings of the 16th International Society for Music Information Retrieval Conference (ISMIR) (2015)Google Scholar
  4. 4.
    Bogdanov, D., et al.: ESSENTIA: an audio analysis library for music information retrieval. In: International Society for Music Information Retrieval Conference (2013)Google Scholar
  5. 5.
    Bozkurt, B., Ayangil, R., Holzapfel, A.: Computational analysis of Turkish Makam music: review of state-of-the-art and challenges. J. New Music Res. 43(1), 3–23 (2014)CrossRefGoogle Scholar
  6. 6.
    Cowley, J.: Carnival, Canboulay, and Calypso: Traditions in the Making. Cambridge University Press, Cambridge (1996)Google Scholar
  7. 7.
    Dudley, S.: The steelband “own tune”: nationalism, festivity, and musical strategies in Trinidad’s panorama competition. Black Music Res. J. 22, 13–36 (2002)CrossRefGoogle Scholar
  8. 8.
    Dudley, S.: Music From behind the Bridge: Steelband Spirit and Politics in Trinidad and Tobago. Oxford University Press, Oxford (2008)Google Scholar
  9. 9.
    Fillon, T., Pellerin, G., Brossier, P., Simonnot, J.: An open web audio platform for ethnomusicological sound, pp. 1–8. ACM (2014)Google Scholar
  10. 10.
    Gomez, E., Herrera, P., Gomez-Martin, F.: Computational ethnomusicology: perspectives and challenges. J. New Music Res. 42(2), 111–112 (2013)CrossRefGoogle Scholar
  11. 11.
    Guilbault, J.: Governing Sound: The Cultural Politics of Trinidad’s Carnival Musics. University of Chicago Press, Chicago (2007)Google Scholar
  12. 12.
    Hamlos, I., Koszegi, G., Madler, G.: Computational ethnomusicology in Hungary in 1978. In: Proceedings of the International Computer Music Conference (1978)Google Scholar
  13. 13.
    Helmlinger, A.: Pan jumbie: memoire sociale et musicale dans les steelbands de Trinidad et Tobago, Societe d’ethnologie (2012)Google Scholar
  14. 14.
    Holzapfel, A., Stylianou, Y.: Similarity methods for computational ethnomusicology. IEEE Trans. Audio Speech Lang. Process. (2010)Google Scholar
  15. 15.
    Huron, D.: The melodic arch in Western folksongs. Comput. Musicol. 10, 3–23 (1996)Google Scholar
  16. 16.
    ITU Recommendation BS.1770. https://www.itu.int/rec/R-REC-BS.1770/en
  17. 17.
    Kroher, N., et al.: Computational ethnomusicology: a study of Flamenco and Arab-Andalusian vocal music. In: Bader, R. (ed.) Springer Handbook of Systematic Musicology. SH, pp. 885–897. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-662-55004-5_43CrossRefGoogle Scholar
  18. 18.
    Mauch, M., Dixon, S.: Approximate note transcription for the improved identification of difficult chords. In: Proceedings of the 11th International Society for Music Information Retrieval Conference (2010)Google Scholar
  19. 19.
    Panteli, M., Benetos, E., Dixon, S.: Automatic detection of outliers in world music. In: Proceedings of the International Society for Music Information Retrieval Conference (2016)Google Scholar
  20. 20.
    Plomp, R., Levelt, W.J.M.: Tonal consonance and critical bandwidth. J. Acoust. Soc. Am. 38(4), 548–560 (1965)CrossRefGoogle Scholar
  21. 21.
    Savage, P.E., Brown, S.: Mapping music: cluster analysis of song-type frequencies within and between cultures. In: Ethnomusicology 58(1), 133–155 (2014)CrossRefGoogle Scholar
  22. 22.
    Shalit, U., Weinshall, D., Chechik, G.: Modeling musical influence with topic models. In: Proceedings of the 30th International Conference on Machine Learning (2013)Google Scholar
  23. 23.
    Shanahan, D., Neubarth, K., Conklin, D.: Mining musical traits of social functions in Native American music. In: Proceedings of the International Society for Music Information Retrieval Conference (2016)Google Scholar
  24. 24.
    Stuempfle, S.: The Steelband Movement: The Forging of a National Art in Trinidad and Tobago. University of Pennsylvania, Philadelphia (1996)Google Scholar
  25. 25.
    Tzanetakis, G., Kapur, A., Schloss, W.A., Wright, M.: Computational ethnomusicology. J. Interdiscip. Music. Stud. 1, 1–24 (2007)Google Scholar
  26. 26.
    Voisin, F.: Musical scales in Central Africa and Java: modeling by synthesis. Leonardo Music J. 4, 85–90 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Elio Quinton
    • 1
    Email author
  • Florabelle Spielmann
    • 2
  • Bob L. Sturm
    • 1
  1. 1.Centre for Digital MusicQueen Mary University of LondonLondonUK
  2. 2.CREM-LESC, UMR7186, CNRS, Maison Archologie & Ethnologie Ren-GinouvsNanterreFrance

Personalised recommendations