Music Genre Classification Revisited: An In-Depth Examination Guided by Music Experts

  • Haukur Pálmason
  • Björn Þór Jónsson
  • Markus Schedl
  • Peter KneesEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11265)


Despite their many identified shortcomings, music genres are still often used as ground truth and as a proxy for music similarity. In this work we therefore take another in-depth look at genre classification, this time with the help of music experts. In comparison to existing work, we aim at including the viewpoint of different stakeholders to investigate whether musicians and end-user music taxonomies agree on genre ground truth, through a user study among 20 professional and semi-professional music protagonists. We then compare the results of their genre judgments with different commercial taxonomies and with that of computational genre classification experiments, and discuss individual cases in detail. Our findings coincide with existing work and provide further evidence that a simple classification taxonomy is insufficient.


Music genre classification Expert study Ground truth 



Supported by the Austrian Science Fund (FWF): P25655 and the Austrian FFG: BRIDGE 1 project SmarterJam (858514).


  1. 1.
    Aucouturier, J.J., Pachet, F.: Representing musical genre: a state of the art. J. New Music. Res. 32(1), 83–93 (2003)CrossRefGoogle Scholar
  2. 2.
    Aucouturier, J.J., Pachet, F., Roy, P., Beurivé, A.: Signal + context = better classification. In: Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR), Vienna, Austria (2007)Google Scholar
  3. 3.
    Craft, A., Wiggins, G., Crawford, T.: How many beans make five? The consensus problem in music-genre classification and a new evaluation method for single-genre categorisation systems. In: Proceedings of the 8th International Symposium on Music Information Retrieval (ISMIR), Vienna, Austria (2007)Google Scholar
  4. 4.
    Drott, E.: The end(s) of genre. J. Music. Theory 57(1), 1–45 (2013)CrossRefGoogle Scholar
  5. 5.
    Fabbri, F.: A theory of musical genres: two applications. Popul. Music. Perspect. 1, 52–81 (1981)Google Scholar
  6. 6.
    Gjerdingen, R.O., Perrott, D.: Scanning the dial: the rapid recognition of music genres. J. New Music. Res. 37(2), 93–100 (2008)CrossRefGoogle Scholar
  7. 7.
    Guðmundsson, G.Þ., Jónsson, B.Þ., Amsaleg, L.: A large-scale performance study of cluster-based high-dimensional indexing. In: ACM Multimedia Workshop on Very-Large-Scale Multimedia Corpus, Mining and Retrieval, Florence, Italy (2010)Google Scholar
  8. 8.
    Krumhansl, C.L.: Plink: “Thin Slices” of music. Music. Percept. Interdiscip. J. 27(5), 337–354 (2010)CrossRefGoogle Scholar
  9. 9.
    Lamere, P.: Social tagging and music information retrieval. J. New Music. Res. 37(2), 101–114 (2008). Special Issue: From Genres to Tags - Music Information Retrieval in the Age of Social TaggingCrossRefGoogle Scholar
  10. 10.
    Lippens, S., Martens, J.P., De Mulder, T., Tzanetakis, G.: A comparison of human and automatic musical genre classification. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2004)Google Scholar
  11. 11.
    Lo, H.Y., Wang, J.C., Wang, H.M., Lin, S.D.: Cost-sensitive multi-label learning for audio tag annotation and retrieval. IEEE Trans. Multimed. 13(3), 518–529 (2011)CrossRefGoogle Scholar
  12. 12.
    Mandel, M.I., et al.: Contextual tag inference. ACM Trans. Multimed. Comput. Commun. Appl. 7S(1), 32:1–32:18 (2011)CrossRefGoogle Scholar
  13. 13.
    Marques, G., Domingues, M.A., Langlois, T., Gouyon, F.: Three current issues in music autotagging. In: Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR), pp. 795–800 (2011)Google Scholar
  14. 14.
    McKay, C., Fujinaga, I.: Musical genre classification: is it worth pursuing and how can it be improved? In: Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR), Victoria, BC, Canada (2006)Google Scholar
  15. 15.
    Novello, A., McKinney, M.F., Kohlrausch, A.: Perceptual evaluation of music similarity. In: Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR), Victoria, BC, Canada (2006)Google Scholar
  16. 16.
    Pachet, F., Cazaly, D.: A taxonomy of musical genre. In: Proceedings of Content-Based Multimedia Information Access (RIAO) Conference, Paris, France (2000)Google Scholar
  17. 17.
    Scaringella, N., Zoia, G., Mlynek, D.: Automatic genre classification of music content: a survey. IEEE Signal Process. Mag. 23(2), 133–141 (2006)CrossRefGoogle Scholar
  18. 18.
    Schedl, M., Flexer, A., Urbano, J.: The neglected user in music information retrieval research. J. Intell. Inf. Syst. 41, 523–539 (2013)CrossRefGoogle Scholar
  19. 19.
    Seyerlehner, K., Widmer, G., Knees, P.: A comparison of human, automatic and collaborative music genre classification and user centric evaluation of genre classification systems. In: Detyniecki, M., Knees, P., Nürnberger, A., Schedl, M., Stober, S. (eds.) AMR 2010. LNCS, vol. 6817, pp. 118–131. Springer, Heidelberg (2012). Scholar
  20. 20.
    Sturm, B.L.: An analysis of the GTZAN music genre dataset. In: Proceedings of the 2nd International ACM Workshop on Music Information Retrieval with User-centered and Multimodal Strategies (MIRUM), Nara, Japan (2012)Google Scholar
  21. 21.
    Sturm, B.L.: The state of the art ten years after a state of the art: future research in music information retrieval. J. New Music. Res. 43(2), 147–172 (2014)CrossRefGoogle Scholar
  22. 22.
    Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Towards musical query-by-semantic-description using the CAL500 data set. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), Amsterdam, the Netherlands (2007)Google Scholar
  23. 23.
    Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process. 16(2), 467–476 (2008)CrossRefGoogle Scholar
  24. 24.
    Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE Trans. Audio, Speech, Lang. Process. 10(5), 293–302 (2002)CrossRefGoogle Scholar
  25. 25.
    Wang, S.Y., Wang, J.C., Yang, Y.H., Wang, H.M.: Towards time-varying music auto-tagging based on cal500 expansion. In: Proceedings of the 2014 IEEE International Conference on Multimedia and Expo (ICME) (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Haukur Pálmason
    • 1
  • Björn Þór Jónsson
    • 1
    • 2
  • Markus Schedl
    • 3
  • Peter Knees
    • 4
    Email author
  1. 1.Reykjavik UniversityReykjavíkIceland
  2. 2.IT University of CopenhagenCopenhagenDenmark
  3. 3.Johannes Kepler University LinzLinzAustria
  4. 4.TU WienViennaAustria

Personalised recommendations