DIGIT: A Digital Foley System to Generate Footstep Sounds

  • Luis AlyEmail author
  • Rui Penha
  • Gilberto Bernardes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11265)


We present DIGItal sTeps (DIGIT), a system for assisting in the creation of footstep sounds in a post-production foley context—a practice that recreates all diegetic sounds for a moving image. The novelty behind DIGIT is the use of the acoustic (haptic) response of a gesture on a tangible interface as means for navigating and retrieving similar matches from a large database of annotated footstep sounds. While capturing the tactile expressiveness of the traditional sound foley practice in the exploration of physical objects, DIGIT streamlines the workflow of the audio post production environment for film or games by reducing its costly and time-consuming requirements.


Sound design Foley Footsteps Haptic Tangible control 



Project TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER-000020 is financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF).

This work was also supported by a doctoral scholarship from the Portuguese Foundation of Science and Technology (FCT) which sponsors the Collaboratory for Emerging Technologies (CoLab) initiative as part of the UT Austin\(\vert \)Portugal Program.


  1. 1.
    Ament, V.T.: The Foley Grail: The Art of Performing Sound for Film, Games, and Animation. CRC Press, Abingdon (2014)Google Scholar
  2. 2.
    Bernardes, G., Guedes, C., Pennycook, B.: EarGram: an application for interactive exploration of concatenative sound synthesis in pure data. In: Aramaki, M., Barthet, M., Kronland-Martinet, R., Ystad, S. (eds.) CMMR 2012. LNCS, vol. 7900, pp. 110–129. Springer, Heidelberg (2013). Scholar
  3. 3.
    Brooke, J., et al.: SUS - a quick and dirty usability scale. Usability Eval. Ind. 189(194), 4–7 (1996)Google Scholar
  4. 4.
    Camic, P.: From trashed to treasured: a grounded theory analysis of the found object. Psychol. Aesthetics Creativity Arts 4(2), 81 (2010)CrossRefGoogle Scholar
  5. 5.
    Chion, M., Murch, W.: Audio-Vision: Sound on Screen. Columbia University Press, New York (1994)Google Scholar
  6. 6.
    De Götzen, A., Sikström, E., Grani, F., Serafin, S.: Real, foley or synthetic? An evaluation of everyday walking sounds. In: Proceedings of SMC (2013)Google Scholar
  7. 7.
    Doyle, J.: Subtlety of sound: a study of foley art. Senior honors projects, University of Rhode Island (2013).
  8. 8.
    Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fontana, F., Morreale, F., Regia-Corte, T., Lécuyer, A., Marchal, M.: Auditory recognition of floor surfaces by temporal and spectral cues of walking. International Community for Auditory Display (2011)Google Scholar
  10. 10.
    Hackbarth, B., Schnell, N., Schwarz, D.: Audioguide: a framework for creative exploration of concatenative sound synthesis. Technical report, IRCAM (2010).
  11. 11.
    Mitrovic, D., Zeppelzauer, M., Eidenberger, H.: Analysis of the data quality of audio descriptions of environmental sounds. J. Digital Inf. Manag. 5(2), 48 (2007)Google Scholar
  12. 12.
    Nordahl, R., Berrezag, A., Dimitrov, S., Turchet, L., Hayward, V., Serafin, S.: Preliminary experiment combining virtual reality haptic shoes and audio synthesis. In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds.) EuroHaptics 2010. LNCS, vol. 6192, pp. 123–129. Springer, Heidelberg (2010). Scholar
  13. 13.
    Nordahl, R., Turchet, L., Serafin, S.: Sound synthesis and evaluation of interactive footsteps and environmental sounds rendering for virtual reality applications. IEEE Trans. Vis. Comput. Graph. 17(9), 1234–1244 (2011)CrossRefGoogle Scholar
  14. 14.
    Peeters, G., Giordano, B.L., Susini, P., Misdariis, N., McAdams, S.: The timbre toolbox: extracting audio descriptors from musical signals. J. Acoust. Soc. Am. 130(5), 2902–2916 (2011)CrossRefGoogle Scholar
  15. 15.
    Puckette, M.S., Apel, T., Zicarelli, D.D.: Real-time audio analysis tools for Pd and MSP. Analysis 74, 109–112 (1998). Scholar
  16. 16.
    Roads, C.: Microsound. MIT Press, Cambridge (2004)Google Scholar
  17. 17.
    Schwarz, D., Beller, G., Verbrugghe, B., Britton, S.: Real-time corpus-based concatenative synthesis with cataRT. In: 9th International Conference on Digital Audio Effects (DAFx), pp. 279–282 (2006)Google Scholar
  18. 18.
    Sonnenschein, D.: Sound Design: The Expressive Power of Music, Voice, and Sound Effects in Cinema. Michael Wiese Productions, Studio City (2001)Google Scholar
  19. 19.
    Turchet, L., Nordahl, R., Serafin, S., Berrezag, A., Dimitrov, S., Hayward, V.: Audio-haptic physically-based simulation of walking on different grounds. In: 2010 IEEE International Workshop on Multimedia Signal Processing (MMSP), pp. 269–273. IEEE (2010)Google Scholar
  20. 20.
    Turchet, L., Serafin, S., Cesari, P.: Walking pace affected by interactive sounds simulating stepping on different terrains. ACM Trans. Appl. Percept. (TAP) 10(4), 23 (2013)Google Scholar
  21. 21.
    Turchet, L., Serafin, S., Dimitrov, S., Nordahl, R.: Physically based sound synthesis and control of footsteps sounds. In: Proceedings of Digital Audio Effects Conference, vol. 11 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity of PortoPortoPortugal
  2. 2.INESC TEC, Sound and Music ComputingPortoPortugal

Personalised recommendations