Advertisement

Towards the Evaluation of End-to-End Resilience Through External Consistency

  • Thomas ClédelEmail author
  • Simon N. Foley
  • Nora Cuppens
  • Frédéric Cuppens
  • Yvon Kermarrec
  • Frédéric Dubois
  • Youssef Laarouchi
  • Gérard Le Comte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11161)

Abstract

Contemporary systems are built from complex arrangements of interoperating components implementing functional and other non-functional concerns that are necessary to ensure continuing service delivery. One of these concerns—resilience—relies on components that implement a variety of mechanisms, such as access controls, adaptability and redundancy. How these mechanisms interoperate with each other and the systems’ functional components to provide resilience is considered in this paper. External consistency, defined as the extent to which data in the system corresponds to its real-world value, provides a natural interpretation for the definition of resilience. A model of resilience is developed that can be used to trace how the functional and non-functional components in a system contribute to the determination of our confidence in the external consistency of the data that they process.

Notes

Acknowledgements

This work was supported the Cyber CNI Chair of Institute Mines-Télécom which is held by IMT Atlantique and supported by Airbus Defence and Space, Amossys, BNP Parisbas, EDF, Orange, La Poste, Nokia, Société Générale and the Regional Council of Brittany; it has been acknowledged by the French Centre of Excellence in Cybersecurity.

References

  1. 1.
    Alsberg, P.A., Day, J.D.: A principle for resilient sharing of distributed resources. In: Proceedings of the 2nd International Conference on Software Engineering, ICSE 1976, pp. 562–570. IEEE Computer Society Press, Los Alamitos (1976). http://dl.acm.org/citation.cfm?id=800253.807732
  2. 2.
    Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay networks, vol. 35. ACM (2001)Google Scholar
  3. 3.
    Arghandeh, R., von Meier, A., Mehrmanesh, L., Mili, L.: On the definition of cyber-physical resilience in power systems. Renew. Sustain. Energy Rev. 58, 1060–1069 (2016)CrossRefGoogle Scholar
  4. 4.
    Bourget, E., Cuppens, F., Cuppens-Boulahia, N., Dubus, S., Foley, S.N., Laarouchi, Y.: Probabilistic event graph to model safety and security for diagnosis purposes. In: Kerschbaum, F., Paraboschi, S. (eds.) DBSec 2018. LNCS, vol. 10980, pp. 38–47. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-319-95729-6_3CrossRefGoogle Scholar
  5. 5.
    Clark, D.D.: Control point analysis. TRPC (2012).  https://doi.org/10.2139/ssrn.2032124
  6. 6.
    Clark, D.D., Wilson, D.R.: A comparison of commercial and military computer security policies. In: 1987 IEEE Symposium on Security and Privacy, p. 184. IEEE (1987). http://ieeexplore.ieee.org/abstract/document/6234890/
  7. 7.
    Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives. Inf. Sci. 36(1–2), 85–121 (1985).  https://doi.org/10.1016/0020-0255(85)90027-1MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Foley, S.N.: A non-functional approach to system integrity. IEEE J. Sel. Areas Commun. 21(1) (2003)CrossRefGoogle Scholar
  9. 9.
    Foley, S.N.: Security risk management using internal controls. In: Proceedings of the First ACM Workshop on Information Security Governance, pp. 59–64. ACM (2009)Google Scholar
  10. 10.
    Foley, S.N., Mac Adams, W., O’Sullivan, B.: Aggregating trust using triangular norms in the keynote trust management system. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710, pp. 100–115. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22444-7_7CrossRefGoogle Scholar
  11. 11.
    Francis, R., Bekera, B.: A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliab. Eng. Sys. Saf. 121, 90–103 (2014)CrossRefGoogle Scholar
  12. 12.
    Holling, C.S.: Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst. 4(1), 1–23 (1973)CrossRefGoogle Scholar
  13. 13.
    Laprie, J.C.: From dependability to resilience. In: 38th IEEE/IFIP International Conference on Dependable Systems and Networks, pp. G8–G9. Citeseer (2008)Google Scholar
  14. 14.
    Liu, D.: Resilient cluster formation for sensor networks. In: 27th International Conference on Distributed Computing Systems (ICDCS 2007), p. 40. IEEE (2007)Google Scholar
  15. 15.
    Lucia, W., Sinopoli, B., Franze, G.: A set-theoretic approach for secure and resilient control of cyber-physical systems subject to false data injection attacks. In: Science of Security for Cyber-Physical Systems Workshop (SOSCYPS), pp. 1–5. IEEE (2016)Google Scholar
  16. 16.
    Morrison, P., Herzig, K., Murphy, B., Williams, L.: Challenges with applying vulnerability prediction models. In: Proceedings of the 2015 Symposium and Bootcamp on the Science of Security, HotSoS 2015, pp. 4:1–4:9. ACM, New York (2015). http://doi.acm.org/10.1145/2746194.2746198
  17. 17.
    Piètre-Cambacédès, L., Bouissou, M.: Attack and defense modeling with BDMP. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2010. LNCS, vol. 6258, pp. 86–101. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14706-7_7CrossRefGoogle Scholar
  18. 18.
    Ryan, P.Y.A.: Mathematical models of computer security. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 1–62. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45608-2_1CrossRefGoogle Scholar
  19. 19.
    Schweizer, B., Sklar, A.: Probabilistic metric spaces (1983)Google Scholar
  20. 20.
    Sterbenz, J.P., et al.: Resilience and survivability in communication networks: strategies, principles, and survey of disciplines. Comput. Netw. 54(8), 1245–1265 (2010). http://www.sciencedirect.com/science/article/pii/S1389128610000824, Resilient and Survivable Networks
  21. 21.
    Vugrin, E.D., Warren, D.E., Ehlen, M.A.: A resilience assessment framework for infrastructure and economic systems: quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane. Process Saf. Prog. 30(3), 280–290 (2011)CrossRefGoogle Scholar
  22. 22.
    Werner, E.E., Bierman, J.M., French, F.E.: The Children of Kauai: A Longitudinal Study from the Prenatal Period to Age Ten. University of Hawaii Press, Honolulu (1971)Google Scholar
  23. 23.
    Williams, J.G., La Padula, L.J.: Automated support for external consistency. In: Proceedings of Computer Security Foundations Workshop VI, pp. 71–81. IEEE (1993). http://ieeexplore.ieee.org/abstract/document/246637/

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Thomas Clédel
    • 1
    Email author
  • Simon N. Foley
    • 1
  • Nora Cuppens
    • 1
  • Frédéric Cuppens
    • 1
  • Yvon Kermarrec
    • 1
  • Frédéric Dubois
    • 2
  • Youssef Laarouchi
    • 3
  • Gérard Le Comte
    • 4
  1. 1.IMT Atlantique, Lab-STICCUniversité Bretagne LoireRennesFrance
  2. 2.Airbus Defence and Space CyberSecurityRennesFrance
  3. 3.EDF LabsPalaiseauFrance
  4. 4.Société GénéraleParisFrance

Personalised recommendations