Climate and Territorial Suitability for the Vineyards Developed Using GIS Techniques

  • Matteo GentilucciEmail author
  • Maurizio Barbieri
  • Peter Burt
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)


This study assessed the wine vocation of two grapevine cultivars (Maceratino and Sangiovese) in Macerata Province (Central Italy) for different periods: 1931–1960, 1961–1990 and 1991–2014. The maps of viti-cultural potential were edited using GIS software, on the basis of late frosts, optimum temperatures, water requirement and slope. Raster math allowed the summation of the parameters considered, also assessing climate change between periods, in relation to the crops. The aim of this research was to provide a valuable tool for more rational spatial planning.


Vine Grapevine GIS Climate Soil 


  1. Allen, R.G., Pereira, R., Raes, D., Smith, M.: Crop evapotranspiration: guidelines for computing water requirements. FAO irrigation and drainage paper no. 56, Food and Agricultural Organization, Rome, Italy (1998)Google Scholar
  2. Cesaraccio, C., Spano, D., Snyder, R.L., Duce, P.: Chilling and forcing model to predict budburst of crop and forest species. Agric. For. Meteorol. 126, 1–13 (2004)CrossRefGoogle Scholar
  3. Doorenbos, J., Kassam, A.H.: Yield response to water. FAO irrigation and drainage paper no. 33. FAO, Rome, Italy (1979)Google Scholar
  4. Doorenbos, J., Pruit, W.O.: Guidelines for predicting water requirements. FAO irrigation and drainage paper 24. FAO, Rome, Italy (1977)Google Scholar
  5. Fraga, H., Santos, J., Moutinho-Pereira, J., Carlos, C., Silvestre, J., Eiras-Dias, J., Malheiro, A.: Statistical modelling of grapevine phenology in Portuguese wine regions: observed trends and climate change projections. J. Agri Sci 154(5), 795–811 (2016)CrossRefGoogle Scholar
  6. Gentilucci, M.: Grapevine prediction of end of flowering date. In: Acts of the 1st Euro-Mediterranean Conference for Environmental Integration (EMCEI), pp. 1231–1234, Springer, Tunisia (2017)CrossRefGoogle Scholar
  7. Hall, A., Jones, G.: Spatial analysis of climate in winegrape-growing regions in Australia. Aust. J. Grape Wine Res. 16, 389–404 (2010)CrossRefGoogle Scholar
  8. Hargreaves, G.H., Samani, Z.A.: Estimating potential evapotranspiration. J. Irrig Drainage Eng, ASCE 108(IR3), 223–230 (1982)Google Scholar
  9. Huglin, P.: Nouveau Mode d’Évaluation des Possibilités Héliothermiques d’un Milieu Viticole. Comptes Rendus de l’Académie d’Agriculture de France 64, 1117–1126 (1978)Google Scholar
  10. Moriondo, M., Bindi, M.: Impact of climate change on the phenology of typical mediterranean crops. Ital. J. Agrometeorol. 5–12 (2007)Google Scholar
  11. Richardson, E.A., Seeley, S.D., Walker, D.R.: A model for estimating the completation of rest for Redhaven and Elberta peach trees. HortScience 9(4), 331–332 (1974)Google Scholar
  12. Zapata, D., Salazar-Gutierrez, M., Chaves, B., Keller, M., Hoogenboom, G.: Predicting key phenological stages for 17 grapevine cultivars (Vitisvinifera L.). Am. J. Enol. Viticulture (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Matteo Gentilucci
    • 1
    Email author
  • Maurizio Barbieri
    • 2
  • Peter Burt
    • 3
  1. 1.University of CamerinoCamerinoItaly
  2. 2.Sapienza University of RomeRomeItaly
  3. 3.University of GreenwichChatham Maritime, KentUK

Personalised recommendations