Advertisement

Digital Diffusion for Inclusive Agroecosystems

  • Chandrashekhar BiradarEmail author
  • Jacques Wery
  • Fabian Löw
  • Khaled El-Shama
  • Rajkumar Singh
  • Layal Atassi
  • Jalal Omari
  • Atef Swelam
  • Ashutosh Sarkar
  • Mounir Louhaichi
  • Boubaker Dhehibi
  • Enrico Bonaiuti
  • Bao Le
  • Theib Oweis
  • Yashpal Saharawat
  • Abdoul Aziz Niane
  • Ahmad Amri
  • Karan Nadagoudar
  • Jawoo Koo
  • Xiangming Xiao
  • Hrishikesh Ballal
  • M. H. Mehta
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

The technological advancements in agriculture have resulted in higher yields but lower ecological efficiency and nutritional value. Little innovations in later sectors such as integrating ecological functions in the production systems have crippled our agro-ecosystems to meet the ever-growing demands. The digitization of the agro-ecosystems has become the most essential entry point for any large scale sustainable developmental entities whether it is, crop diversification, sustainable intensification, input use efficiency, agronomic practices, to restoring ecosystem services and risk management. Recent advances in geoinformatics technology and big-data analytics enabled the diffusion of ecological functions in farm production to achieve the desired return (production follows functions). The overarching goal of the ongoing effort was to build an integrated farming system by leveraging technological diffusion with sound ecological functions to design an ‘inclusive agro-ecosystem’ for sustainable development. Meta-analytics of farming systems dynamics in spatial domains help quantifying changes, trajectories and drivers under changing climate, demography and degradation process to target site specific developmental interventions and scaling the proven technologies, such as intensification of food legumes in rice fallows, adoption of conservation agriculture, quantification of yield gaps, land/water productivity and transboundary cooperation.

Keywords

Inclusive agroecosystems Digital diffusion Ecological intensification Big-data Scaling 

References

  1. Altieri, M., Nicholls, C., Henao, A., Lana, M.: Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 35, 869–890 (2015)CrossRefGoogle Scholar
  2. Astier, M., García, L., Galván, Y., González, E., Masera, R.: Assesing the sustainability of small-farmer natural resource management systems. A critical analysis of the MESMIS program (1995–2010). Ecol. Soc. 17(3), 25 (2012)Google Scholar
  3. Biradar, C.M., Thenkabail, P.S., Noojipady, P., Yuanjie, L., Dheeravath, V., Velpuri, M., Turral, H., Gumma, M.K., Reddy, O.G.P., Xueliang, L.C., Xiao, X., Schull, M.A., Alankara, R.D., Gunasinghe, S., Mohideen, S.: A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing. Int. J. Appl. Earth Obs. Geoinf. 11(2), 114–129 (2009)CrossRefGoogle Scholar
  4. Gaba, S., Lescourret, F., Boudsocq, S., Enjalbert, J., Hinsinger, P., Journet, E., Navas, M., Wery, J., Louarn, G., Malézieux, E., Pelzer, E., Prudent, P., Lafontaineet, H.: Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design. Agron. Sustain. Dev. 35(2), 607–623 (2015)CrossRefGoogle Scholar
  5. GeoAgro Homepage. http://geoagro.icarda.org/. Accessed 14 May 2018
  6. Low, F., Biradar, C., Fliemanna, E., Lamers, J., Conrad, C.: Assessing gaps in irrigated agricultural productivity through satellite earth observations - A case study of the Fergana Valley, Central Asia. Int. J. Appl. Earth Obs. Geoinf. 59, 118–134 (2017)CrossRefGoogle Scholar
  7. Low, F., Biradar, C., Dubovyk, O., Fliemann, E., Akramkhanov, A., Vallejo, A.N., Waldner, F.: Regional-scale monitoring of cropland intensity and productivity with multi-source satellite image time series. GIScience Remote Sens. 55(18), 539–567 (2018)CrossRefGoogle Scholar
  8. Mehta, M.H.: Eco Agri Revolution: Practical Lessons and The Way Ahead. New India Publishing Agency—Nipa, New Delhi, India (2017)Google Scholar
  9. Tittonell, P.A.: Ecological intensification of agriculture—sustainable by nature. Curr. Opin. Environ. Sustain. 2014(8), 53–61 (2014).  https://doi.org/10.1016/j.cosust.2014.08.006CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chandrashekhar Biradar
    • 1
    Email author
  • Jacques Wery
    • 1
  • Fabian Löw
    • 1
  • Khaled El-Shama
    • 1
  • Rajkumar Singh
    • 2
  • Layal Atassi
    • 1
  • Jalal Omari
    • 1
  • Atef Swelam
    • 1
  • Ashutosh Sarkar
    • 2
  • Mounir Louhaichi
    • 5
  • Boubaker Dhehibi
    • 5
  • Enrico Bonaiuti
    • 5
  • Bao Le
    • 5
  • Theib Oweis
    • 5
  • Yashpal Saharawat
    • 6
  • Abdoul Aziz Niane
    • 3
  • Ahmad Amri
    • 4
  • Karan Nadagoudar
    • 7
  • Jawoo Koo
    • 8
  • Xiangming Xiao
    • 9
  • Hrishikesh Ballal
    • 10
  • M. H. Mehta
    • 11
  1. 1.International Center for Agricultural Research in Dry Areas (ICARDA)CairoEgypt
  2. 2.ICARDANew DelhiIndia
  3. 3.ICARDABeirutLebanon
  4. 4.ICARDARabatMorocco
  5. 5.ICARDAAmmanJordan
  6. 6.ICARDAKabulAfghanistan
  7. 7.Data GrokrBengaluruIndia
  8. 8.International Food Policy Research InstituteWashingtonUSA
  9. 9.University of OklahomaNormanUSA
  10. 10.Geodesign HubRanelaghIreland
  11. 11.Indian Council of Food and AgricultureNew DelhiIndia

Personalised recommendations